Spaces:
Sleeping
Sleeping
File size: 23,448 Bytes
66fef64 8331c23 66fef64 cd5a102 66fef64 cd5a102 66fef64 cd5a102 66fef64 cd5a102 66fef64 0236fb6 66fef64 0236fb6 66fef64 0236fb6 66fef64 0236fb6 66fef64 0236fb6 66fef64 0236fb6 945f885 0236fb6 945f885 66fef64 945f885 66fef64 7bec29d 66fef64 7bec29d 66fef64 0236fb6 66fef64 0236fb6 66fef64 7bec29d 66fef64 7bec29d 66fef64 7bec29d 66fef64 7bec29d 66fef64 0236fb6 66fef64 0236fb6 66fef64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
"""
Build FAISS index from movie embeddings
This script should be run once to create the data files needed by the API
"""
import os
import json
import numpy as np
import faiss
from openai import OpenAI
import requests
from typing import Dict, List, Optional
import time
import argparse
from concurrent.futures import ThreadPoolExecutor, as_completed
import logging
import pickle
# Try different import patterns to handle both direct execution and module execution
try:
from .settings import get_settings
except ImportError:
try:
from app.settings import get_settings
except ImportError:
from settings import get_settings
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Checkpoint file paths - use temp directory or disable for production
import tempfile
CHECKPOINT_DIR = os.environ.get('CHECKPOINT_DIR', tempfile.gettempdir())
MOVIE_DATA_CHECKPOINT = f"{CHECKPOINT_DIR}/movie_data.pkl"
EMBEDDINGS_CHECKPOINT = f"{CHECKPOINT_DIR}/embeddings_progress.pkl"
METADATA_CHECKPOINT = f"{CHECKPOINT_DIR}/metadata_progress.pkl"
def save_checkpoint(data, filepath: str):
"""Save checkpoint data to file - skip if permissions denied"""
try:
os.makedirs(os.path.dirname(filepath), exist_ok=True)
with open(filepath, 'wb') as f:
pickle.dump(data, f)
logger.info(f"Checkpoint saved: {filepath}")
except PermissionError:
logger.warning(f"Cannot save checkpoint due to permissions: {filepath}")
except Exception as e:
logger.warning(f"Failed to save checkpoint {filepath}: {e}")
def load_checkpoint(filepath: str):
"""Load checkpoint data from file"""
try:
if os.path.exists(filepath):
with open(filepath, 'rb') as f:
data = pickle.load(f)
logger.info(f"Checkpoint loaded: {filepath}")
return data
except Exception as e:
logger.warning(f"Failed to load checkpoint {filepath}: {e}")
return None
def cleanup_checkpoints():
"""Remove checkpoint files after successful completion"""
try:
import shutil
if os.path.exists(CHECKPOINT_DIR) and CHECKPOINT_DIR != tempfile.gettempdir():
shutil.rmtree(CHECKPOINT_DIR)
logger.info("Checkpoint files cleaned up")
except Exception as e:
logger.warning(f"Failed to cleanup checkpoints: {e}")
class TMDBClient:
"""Client for TMDB API with retry and backoff"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://api.themoviedb.org/3"
self.session = requests.Session()
def _make_request(self, endpoint: str, params: dict = None, max_retries: int = 3) -> Optional[dict]:
"""Make API request with retry and backoff"""
if params is None:
params = {}
params['api_key'] = self.api_key
url = f"{self.base_url}{endpoint}"
for attempt in range(max_retries):
try:
response = self.session.get(url, params=params, timeout=10)
if response.status_code == 200:
return response.json()
elif response.status_code == 429:
# Rate limit - wait and retry
wait_time = 2 ** attempt
logger.warning(f"Rate limited, waiting {wait_time}s before retry...")
time.sleep(wait_time)
continue
elif response.status_code == 404:
logger.warning(f"Resource not found: {url}")
return None
else:
logger.error(f"API error {response.status_code}: {response.text}")
except requests.exceptions.RequestException as e:
logger.error(f"Request failed (attempt {attempt + 1}): {e}")
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
return None
def get_popular_movies(self, max_pages: int = 100, filter_adult: bool = True) -> List[int]:
"""Get movie IDs from popular movies pagination"""
movie_ids = []
for page in range(1, max_pages + 1):
logger.info(f"Fetching popular movies page {page}/{max_pages}")
data = self._make_request("/movie/popular", {"page": page})
if not data:
logger.error(f"Failed to fetch page {page}")
break
# Check if we've exceeded total pages
if page > data.get('total_pages', 0):
logger.info(f"Reached last page ({data.get('total_pages')})")
break
# Extract movie IDs, filtering adult content if requested
for movie in data.get('results', []):
# Skip adult movies if filtering is enabled
if filter_adult and movie.get('adult', False):
logger.debug(f"Skipping adult movie: {movie.get('title', 'Unknown')} (ID: {movie.get('id')})")
continue
movie_ids.append(movie['id'])
# Rate limiting
time.sleep(0.25) # 4 requests per second max
logger.info(f"Collected {len(movie_ids)} movie IDs from {page} pages (adult filter: {'ON' if filter_adult else 'OFF'})")
return movie_ids
def get_movie_details(self, movie_id: int) -> Optional[dict]:
"""Get detailed movie information"""
return self._make_request(f"/movie/{movie_id}")
def get_movie_credits(self, movie_id: int) -> Optional[dict]:
"""Get movie cast and crew"""
return self._make_request(f"/movie/{movie_id}/credits")
def fetch_movie_data(tmdb_client: TMDBClient, movie_ids: List[int], max_workers: int = 5) -> Dict[int, dict]:
"""Fetch detailed data for all movies with controlled parallelization"""
movies_data = {}
def fetch_single_movie(movie_id: int) -> tuple:
"""Fetch details and credits for a single movie"""
try:
# Get basic details
details = tmdb_client.get_movie_details(movie_id)
if not details:
return movie_id, None
# Get credits
credits = tmdb_client.get_movie_credits(movie_id)
if credits:
details['credits'] = credits
return movie_id, details
except Exception as e:
logger.error(f"Error fetching movie {movie_id}: {e}")
return movie_id, None
# Process movies in batches with controlled parallelization
batch_size = 50
total_movies = len(movie_ids)
for i in range(0, total_movies, batch_size):
batch = movie_ids[i:i + batch_size]
logger.info(f"Processing batch {i//batch_size + 1}/{(total_movies-1)//batch_size + 1} ({len(batch)} movies)")
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = {executor.submit(fetch_single_movie, movie_id): movie_id for movie_id in batch}
for future in as_completed(futures):
movie_id, movie_data = future.result()
if movie_data:
movies_data[movie_id] = movie_data
# Sleep between batches to be respectful to API
time.sleep(1)
logger.info(f"Successfully fetched data for {len(movies_data)}/{total_movies} movies")
return movies_data
def create_composite_text(movie_data: Dict) -> str:
"""Create composite text for embedding from movie data"""
parts = []
# Title
if movie_data.get('title'):
parts.append(f"Title: {movie_data['title']}")
# Tagline
if movie_data.get('tagline'):
parts.append(f"Tagline: {movie_data['tagline']}")
# Overview
if movie_data.get('overview'):
parts.append(f"Overview: {movie_data['overview']}")
# Release date
if movie_data.get('release_date'):
parts.append(f"Release Date: {movie_data['release_date']}")
# Original language
if movie_data.get('original_language'):
parts.append(f"Language: {movie_data['original_language']}")
# Spoken languages
if movie_data.get('spoken_languages'):
languages = [lang.get('iso_639_1', '') for lang in movie_data['spoken_languages'] if lang.get('iso_639_1')]
if languages:
parts.append(f"Spoken Languages: {', '.join(languages)}")
# Genres
if movie_data.get('genres'):
genres = [genre['name'] for genre in movie_data['genres']]
parts.append(f"Genres: {', '.join(genres)}")
# Production companies
if movie_data.get('production_companies'):
companies = [company['name'] for company in movie_data['production_companies']]
if companies:
parts.append(f"Production Companies: {', '.join(companies)}")
# Production countries
if movie_data.get('production_countries'):
countries = [country['name'] for country in movie_data['production_countries']]
if countries:
parts.append(f"Production Countries: {', '.join(countries)}")
# Budget (only if > 0)
if movie_data.get('budget') and movie_data['budget'] > 0:
parts.append(f"Budget: ${movie_data['budget']:,}")
# Popularity
if movie_data.get('popularity'):
parts.append(f"Popularity: {movie_data['popularity']}")
# Vote average
if movie_data.get('vote_average'):
parts.append(f"Vote Average: {movie_data['vote_average']}")
# Vote count
if movie_data.get('vote_count'):
parts.append(f"Vote Count: {movie_data['vote_count']}")
# Director(s)
if movie_data.get('credits', {}).get('crew'):
directors = [person['name'] for person in movie_data['credits']['crew'] if person['job'] == 'Director']
if directors:
parts.append(f"Director: {', '.join(directors)}")
# Top 5 cast
if movie_data.get('credits', {}).get('cast'):
top_cast = [person['name'] for person in movie_data['credits']['cast'][:5]]
if top_cast:
parts.append(f"Cast: {', '.join(top_cast)}")
return " / ".join(parts)
def get_embeddings_batch(texts: List[str], client: OpenAI, model: str = "text-embedding-3-small") -> List[List[float]]:
"""Get embeddings for a batch of texts with retry"""
max_retries = 3
for attempt in range(max_retries):
try:
response = client.embeddings.create(
input=texts,
model=model
)
return [item.embedding for item in response.data]
except Exception as e:
logger.error(f"Error getting embeddings (attempt {attempt + 1}): {e}")
if attempt < max_retries - 1:
time.sleep(2 ** attempt)
else:
raise
def build_index(max_pages: int = 10, model: str = "text-embedding-3-small", use_faiss: bool = True, override_adult_filter: bool = None):
"""Main function to build the FAISS index and data files"""
settings = get_settings()
# Determine adult filtering setting
filter_adult = settings.filter_adult_content_bool if hasattr(settings, 'filter_adult_content_bool') else settings.filter_adult_content
if override_adult_filter is not None:
filter_adult = not override_adult_filter # --include-adult means don't filter
logger.info(f"Adult filter override: {'DISABLED' if override_adult_filter else 'ENABLED'}")
# Initialize clients with error handling for version compatibility
tmdb_client = TMDBClient(settings.tmdb_api_key)
try:
# Try to create OpenAI client with different approaches for version compatibility
try:
openai_client = OpenAI(api_key=settings.openai_api_key)
except TypeError as e:
if "proxies" in str(e):
# Fallback for version compatibility issues
logger.warning(f"OpenAI client compatibility issue: {e}")
logger.info("Trying alternative OpenAI client initialization...")
import httpx
# Create a basic httpx client without proxies
http_client = httpx.Client(timeout=60.0)
openai_client = OpenAI(api_key=settings.openai_api_key, http_client=http_client)
else:
raise
except Exception as e:
logger.error(f"β Failed to initialize OpenAI client: {e}")
logger.error("Please check your OpenAI API key and ensure compatible versions are installed")
return
# Create data directory with absolute path
script_dir = os.path.dirname(os.path.abspath(__file__))
data_dir = os.path.join(script_dir, "data")
try:
os.makedirs(data_dir, exist_ok=True)
# Test write permissions
test_file = os.path.join(data_dir, ".write_test")
with open(test_file, 'w') as f:
f.write("test")
os.remove(test_file)
logger.info(f"Data directory ready: {data_dir}")
except PermissionError as e:
logger.error(f"β Permission denied when creating data directory: {e}")
logger.error("Make sure the data directory has write permissions")
return
except Exception as e:
logger.error(f"β Failed to create or write to data directory: {e}")
return
# Check for existing movie data checkpoint
movies_data = load_checkpoint(MOVIE_DATA_CHECKPOINT)
if movies_data is not None:
logger.info(f"π Resuming from checkpoint: {len(movies_data)} movies data found")
else:
# Step 1: Get movie IDs
logger.info(f"Fetching movie IDs from TMDB (max {max_pages} pages)...")
movie_ids = tmdb_client.get_popular_movies(
max_pages=max_pages,
filter_adult=filter_adult
)
if not movie_ids:
logger.error("β No movie IDs retrieved from TMDB")
return
# Step 2: Fetch detailed movie data
logger.info(f"Fetching detailed data for {len(movie_ids)} movies...")
movies_data = fetch_movie_data(tmdb_client, movie_ids)
if not movies_data:
logger.error("β No movie data retrieved")
return
# Additional filtering at the detail level (double-check)
if filter_adult:
original_count = len(movies_data)
movies_data = {k: v for k, v in movies_data.items() if not v.get('adult', False)}
filtered_count = original_count - len(movies_data)
if filtered_count > 0:
logger.info(f"Filtered out {filtered_count} adult movies at detail level")
# Save movie data checkpoint
save_checkpoint(movies_data, MOVIE_DATA_CHECKPOINT)
# Step 3: Create composite texts and process embeddings in batches
logger.info("Creating embeddings...")
embeddings = []
id_map = {}
movie_metadata = {}
processed_movie_ids = set()
batch_size = 20 # Process 20 texts at a time
# Check for existing embedding progress
embedding_checkpoint = load_checkpoint(EMBEDDINGS_CHECKPOINT)
metadata_checkpoint = load_checkpoint(METADATA_CHECKPOINT)
if embedding_checkpoint is not None and metadata_checkpoint is not None:
embeddings = embedding_checkpoint['embeddings']
id_map = embedding_checkpoint['id_map']
processed_movie_ids = set(embedding_checkpoint['processed_movie_ids'])
movie_metadata = metadata_checkpoint
logger.info(f"π Resuming embeddings from checkpoint: {len(embeddings)} embeddings found")
else:
logger.info("Starting embeddings from scratch")
# Process remaining movies
remaining_movies = {k: v for k, v in movies_data.items() if k not in processed_movie_ids}
logger.info(f"Processing {len(remaining_movies)} remaining movies")
composite_texts = []
current_movie_ids = []
for movie_id, movie_data in remaining_movies.items():
# Create composite text
composite_text = create_composite_text(movie_data)
composite_texts.append(composite_text)
current_movie_ids.append(movie_id)
# Store metadata
release_year = 0
if movie_data.get("release_date"):
try:
release_year = int(movie_data["release_date"][:4])
except (ValueError, IndexError):
release_year = 0
movie_metadata[str(movie_id)] = {
"id": movie_id,
"title": movie_data.get("title", ""),
"year": release_year,
"poster_path": movie_data.get("poster_path"),
"release_date": movie_data.get("release_date"),
"genres": [g["name"] for g in movie_data.get("genres", [])]
}
# Process batch when full
if len(composite_texts) >= batch_size:
logger.info(f"Processing embedding batch ({len(embeddings)} done, {len(composite_texts)} in batch)")
try:
batch_embeddings = get_embeddings_batch(composite_texts, openai_client, model)
embeddings.extend(batch_embeddings)
# Update ID mapping and processed set
for i, mid in enumerate(current_movie_ids):
id_map[str(mid)] = len(id_map)
processed_movie_ids.add(mid)
# Save progress checkpoints
embedding_data = {
'embeddings': embeddings,
'id_map': id_map,
'processed_movie_ids': list(processed_movie_ids)
}
save_checkpoint(embedding_data, EMBEDDINGS_CHECKPOINT)
save_checkpoint(movie_metadata, METADATA_CHECKPOINT)
# Clear batch
composite_texts = []
current_movie_ids = []
# Sleep between batches
time.sleep(0.5)
except Exception as e:
logger.error(f"Failed to process batch: {e}")
logger.info("Progress has been saved, you can restart the script to resume")
return
# Process remaining texts
if composite_texts:
logger.info(f"Processing final embedding batch ({len(composite_texts)} texts)")
try:
batch_embeddings = get_embeddings_batch(composite_texts, openai_client, model)
embeddings.extend(batch_embeddings)
for i, mid in enumerate(current_movie_ids):
id_map[str(mid)] = len(id_map)
processed_movie_ids.add(mid)
# Save final progress
embedding_data = {
'embeddings': embeddings,
'id_map': id_map,
'processed_movie_ids': list(processed_movie_ids)
}
save_checkpoint(embedding_data, EMBEDDINGS_CHECKPOINT)
save_checkpoint(movie_metadata, METADATA_CHECKPOINT)
except Exception as e:
logger.error(f"Failed to process final batch: {e}")
logger.info("Progress has been saved, you can restart the script to resume")
return
if not embeddings:
logger.error("β No embeddings generated")
return
logger.info(f"Generated {len(embeddings)} embeddings")
# Step 4: Save embeddings as numpy array
embeddings_array = np.array(embeddings, dtype=np.float32)
embeddings_path = os.path.join(data_dir, "movies.npy")
try:
np.save(embeddings_path, embeddings_array)
logger.info(f"Saved embeddings matrix: {embeddings_array.shape}")
except Exception as e:
logger.error(f"β Failed to save embeddings: {e}")
return
# Step 5: Build and save FAISS index
if use_faiss:
logger.info("Building FAISS index...")
dimension = embeddings_array.shape[1]
# Choose index type based on size
if len(embeddings) < 10000:
# For smaller datasets, use flat index
index = faiss.IndexFlatL2(dimension)
else:
# For larger datasets, use IVF index
nlist = min(int(np.sqrt(len(embeddings))), 1000)
quantizer = faiss.IndexFlatL2(dimension)
index = faiss.IndexIVFFlat(quantizer, dimension, nlist)
# Train the index
index.train(embeddings_array)
index.add(embeddings_array)
index_path = os.path.join(data_dir, "faiss.index")
try:
faiss.write_index(index, index_path)
logger.info(f"FAISS index saved (type: {type(index).__name__}, dimension: {dimension})")
except Exception as e:
logger.error(f"β Failed to save FAISS index: {e}")
return
# Step 6: Save metadata files
id_map_path = os.path.join(data_dir, "id_map.json")
metadata_path = os.path.join(data_dir, "movie_metadata.json")
try:
with open(id_map_path, "w") as f:
json.dump(id_map, f)
with open(metadata_path, "w") as f:
json.dump(movie_metadata, f)
logger.info("β
Index built successfully!")
logger.info(f" - {len(embeddings)} movies indexed")
logger.info(f" - Embedding model: {model}")
logger.info(f" - Files saved in {data_dir}")
logger.info(f" * movies.npy: embeddings matrix")
logger.info(f" * id_map.json: TMDB ID to matrix position mapping")
logger.info(f" * movie_metadata.json: movie metadata")
if use_faiss:
logger.info(f" * faiss.index: FAISS search index")
# Cleanup checkpoints
cleanup_checkpoints()
except Exception as e:
logger.error(f"β Failed to save metadata files: {e}")
return
# Remove the old functions that are no longer needed
# create_movie_embedding and load_movie_data are replaced by the new implementation
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Build movie embeddings index from TMDB data")
parser.add_argument("--max-pages", type=int, default=10,
help="Maximum pages to fetch from TMDB popular movies (default: 10)")
parser.add_argument("--model", type=str, default="text-embedding-3-small",
help="OpenAI embedding model to use (default: text-embedding-3-small)")
parser.add_argument("--no-faiss", action="store_true",
help="Skip building FAISS index")
parser.add_argument("--include-adult", action="store_true",
help="Include adult movies (overrides FILTER_ADULT_CONTENT setting)")
args = parser.parse_args()
build_index(
max_pages=args.max_pages,
model=args.model,
use_faiss=not args.no_faiss,
override_adult_filter=args.include_adult
) |