File size: 8,132 Bytes
14e32e0
 
 
 
 
 
 
 
2f58804
14e32e0
 
 
 
 
 
 
 
2f58804
 
 
14e32e0
b8ca8ae
 
 
14e32e0
 
 
 
 
 
 
 
 
 
b8ca8ae
 
 
14e32e0
2f58804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e32e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e003fe
14e32e0
 
 
 
 
 
5e003fe
 
14e32e0
5e003fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14e32e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from datasets import Dataset, load_dataset
from huggingface_hub import HfApi, create_repo
import numpy as np
import json
import logging
from typing import Dict, List, Tuple, Optional
import os
from datetime import datetime
import tempfile

logger = logging.getLogger(__name__)

class HFVectorStorage:
    def __init__(self):
        self.hf_token = os.getenv('HF_TOKEN')
        self.repo_name = os.getenv('HF_DATASET_REPO')
        
        # Configure HF cache directory to a writable location
        self._setup_hf_cache()
        
        if self.hf_token and self.repo_name:
            self.api = HfApi(token=self.hf_token)
            
            # Créer le repo s'il n'existe pas
            try:
                create_repo(
                    repo_id=self.repo_name,
                    repo_type="dataset",
                    token=self.hf_token,
                    private=True,
                    exist_ok=True
                )
            except Exception as e:
                logger.warning(f"Repo creation warning: {e}")
        else:
            self.api = None
            logger.warning("HF_TOKEN or HF_DATASET_REPO not configured")
    
    def _setup_hf_cache(self):
        """Setup HF cache directory to avoid permission issues"""
        try:
            # Try to use a writable cache directory
            cache_dirs = [
                os.getenv('HF_HOME'),
                os.getenv('XDG_CACHE_HOME'),
                os.path.expanduser('~/.cache/huggingface'),
                '/tmp/hf_cache',
                tempfile.gettempdir() + '/hf_cache'
            ]
            
            for cache_dir in cache_dirs:
                if cache_dir:
                    try:
                        os.makedirs(cache_dir, exist_ok=True)
                        # Test write permission
                        test_file = os.path.join(cache_dir, 'test_write')
                        with open(test_file, 'w') as f:
                            f.write('test')
                        os.remove(test_file)
                        
                        # Set environment variables for HF
                        os.environ['HF_HOME'] = cache_dir
                        os.environ['HUGGINGFACE_HUB_CACHE'] = cache_dir
                        logger.info(f"Using HF cache directory: {cache_dir}")
                        return
                    except (OSError, PermissionError):
                        continue
            
            logger.warning("Could not find writable cache directory, using default")
            
        except Exception as e:
            logger.warning(f"Error setting up HF cache: {e}")
    
    def save_vectors(self, embeddings: np.ndarray, movies_data: List[Dict], 
                    id_map: Dict, metadata: Dict) -> bool:
        """Sauvegarde les vecteurs sur HF Dataset Hub"""
        try:
            if not self.hf_token or not self.repo_name:
                logger.error("HF_TOKEN or HF_DATASET_REPO not configured")
                return False
                
            # Préparer les données pour le dataset
            dataset_dict = {
                'movie_id': [movie['id'] for movie in movies_data],
                'title': [movie['title'] for movie in movies_data],
                'overview': [movie.get('overview', '') for movie in movies_data],
                'genres': [movie.get('genres', []) for movie in movies_data],
                'release_date': [movie.get('release_date', '') for movie in movies_data],
                'embedding': embeddings.tolist(),
                'tmdb_data': [json.dumps(movie) for movie in movies_data]
            }
            
            # Créer le dataset
            dataset = Dataset.from_dict(dataset_dict)
            
            # Upload vers HF Hub
            dataset.push_to_hub(
                self.repo_name,
                token=self.hf_token,
                commit_message=f"Update vectors - {datetime.now().isoformat()}"
            )
            
            # Sauvegarder les métadonnées avec un fichier temporaire dans un répertoire accessible
            metadata_with_timestamp = {
                **metadata,
                'last_updated': datetime.now().isoformat(),
                'total_movies': len(movies_data)
            }
            
            # Utiliser un répertoire temporaire avec permissions appropriées
            temp_file = os.path.join(tempfile.gettempdir(), f'karl_metadata_{os.getpid()}.json')
            
            try:
                with open(temp_file, 'w') as f:
                    json.dump(metadata_with_timestamp, f, indent=2)
                
                self.api.upload_file(
                    path_or_fileobj=temp_file,
                    path_in_repo='metadata.json',
                    repo_id=self.repo_name,
                    repo_type='dataset',
                    token=self.hf_token,
                    commit_message=f"Update metadata - {datetime.now().isoformat()}"
                )
                
                logger.info(f"Successfully saved {len(movies_data)} movie vectors to HF Hub")
                return True
                
            finally:
                # Nettoyer le fichier temporaire
                try:
                    if os.path.exists(temp_file):
                        os.remove(temp_file)
                except Exception as cleanup_error:
                    logger.warning(f"Could not remove temp file {temp_file}: {cleanup_error}")
            
        except Exception as e:
            logger.error(f"Error saving vectors to HF Hub: {e}")
            return False
    
    def load_vectors(self) -> Optional[Tuple[np.ndarray, List[Dict], Dict, Dict]]:
        """Charge les vecteurs depuis HF Dataset Hub"""
        try:
            if not self.hf_token or not self.repo_name:
                logger.error("HF_TOKEN or HF_DATASET_REPO not configured")
                return None
                
            # Charger le dataset
            dataset = load_dataset(self.repo_name, token=self.hf_token)['train']
            
            # Extraire les données
            embeddings = np.array(dataset['embedding'])
            
            movies_data = []
            id_map = {}
            
            for i, movie_id in enumerate(dataset['movie_id']):
                movie_data = json.loads(dataset['tmdb_data'][i])
                movies_data.append(movie_data)
                id_map[movie_id] = i
            
            # Charger les métadonnées
            try:
                metadata_file = self.api.hf_hub_download(
                    repo_id=self.repo_name,
                    filename='metadata.json',
                    repo_type='dataset',
                    token=self.hf_token
                )
                with open(metadata_file, 'r') as f:
                    metadata = json.load(f)
            except:
                metadata = {'last_updated': None}
            
            logger.info(f"Successfully loaded {len(movies_data)} movie vectors from HF Hub")
            return embeddings, movies_data, id_map, metadata
            
        except Exception as e:
            logger.error(f"Error loading vectors from HF Hub: {e}")
            return None
    
    def check_update_needed(self) -> bool:
        """Vérifie si une mise à jour est nécessaire"""
        try:
            update_interval = int(os.getenv('UPDATE_INTERVAL_HOURS', 24))
            
            # Charger les métadonnées actuelles
            result = self.load_vectors()
            if not result:
                return True
                
            _, _, _, metadata = result
            
            if not metadata.get('last_updated'):
                return True
            
            last_update = datetime.fromisoformat(metadata['last_updated'])
            hours_since_update = (datetime.now() - last_update).total_seconds() / 3600
            
            return hours_since_update >= update_interval
            
        except Exception as e:
            logger.error(f"Error checking update status: {e}")
            return True