Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline, AutoTokenizer | |
from huggingface_hub import login | |
hf_token = os.getenv("hf_token") | |
login(token=hf_token) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
_text_gen_pipeline = None | |
_image_gen_pipeline = None | |
def get_image_gen_pipeline(): | |
global _image_gen_pipeline | |
if _image_gen_pipeline is None: | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
# Load fast tokenizer for the image pipeline | |
# tokenizer = AutoTokenizer.from_pretrained( | |
# "black-forest-labs/FLUX.1-schnell", | |
# # "black-forest-labs/FLUX.1-dev", | |
# use_fast=True | |
# ) | |
_image_gen_pipeline = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
# "black-forest-labs/FLUX.1-dev", | |
torch_dtype=dtype, | |
# tokenizer=tokenizer | |
).to(device) | |
except Exception as e: | |
print(f"Error loading image generation model: {e}") | |
return None | |
return _image_gen_pipeline | |
def get_text_gen_pipeline(): | |
global _text_gen_pipeline | |
if _text_gen_pipeline is None: | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
use_fast=True | |
) | |
_text_gen_pipeline = pipeline( | |
"text-generation", | |
model="mistralai/Mistral-7B-Instruct-v0.3", | |
tokenizer=tokenizer, | |
max_new_tokens=2048, | |
device=device, | |
) | |
except Exception as e: | |
print(f"Error loading text generation model: {e}") | |
return None | |
return _text_gen_pipeline | |
def refine_prompt(prompt): | |
text_gen = get_text_gen_pipeline() | |
if text_gen is None: | |
return "Text generation model is unavailable." | |
try: | |
messages = [ | |
{"role": "system", "content": "Vous êtes un designer produit avec de solides connaissances dans la génération de texte en image. Vous recevrez une demande de produit sous forme de description succincte, et votre mission sera d'imaginer un nouveau design de produit répondant à ce besoin.\n\nLe livrable (réponse générée) sera exclusivement un texte de prompt pour l'IA de texte to image FLUX.1-schnell.\n\nCe prompt devra inclure une description visuelle de l'objet mentionnant explicitement les aspects indispensables de sa fonction.\nA coté de ça vous devez aussi explicitement mentionner dans ce prompt les caractéristiques esthétiques/photo du rendu image (ex : photoréaliste, haute qualité, focale, grain, etc.), sachant que l'image sera l'image principale de cet objet dans le catalogue produit. Le fond de l'image générée doit être entièrement blanc.\nLe prompt doit être sans narration, peut être long mais ne doit pas dépasser 2048 jetons."}, {"role": "user", "content": prompt}, | |
] | |
refined_prompt = text_gen(messages) | |
# Extract just the assistant's content from the response | |
try: | |
messages = refined_prompt[0]['generated_text'] | |
# Find the last message with role 'assistant' | |
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant'] | |
if not assistant_messages: | |
return "Error: No assistant response found" | |
assistant_content = assistant_messages[-1]['content'] | |
return assistant_content | |
except (KeyError, IndexError): | |
return "Error: Unexpected response format from the model" | |
except Exception as e: | |
return f"Error refining prompt: {str(e)}" | |
def validate_dimensions(width, height): | |
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE: | |
return False, "Image dimensions too large" | |
return True, None | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
try: | |
progress(0, desc="Starting generation...") | |
pipe = get_image_gen_pipeline() | |
if pipe is None: | |
return None, "Image generation model is unavailable." | |
# Validate that prompt is not empty | |
if not prompt or prompt.strip() == "": | |
return None, "Please provide a valid prompt." | |
# Validate width/height dimensions | |
is_valid, error_msg = validate_dimensions(width, height) | |
if not is_valid: | |
return None, error_msg | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
progress(0.2, desc="Setting up generator...") | |
generator = torch.Generator().manual_seed(seed) | |
progress(0.4, desc="Generating image...") | |
with torch.autocast('cuda'): | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=5.0, | |
max_sequence_length=2048 | |
).images[0] | |
torch.cuda.empty_cache() # Clean up GPU memory after generation | |
progress(1.0, desc="Done!") | |
return image, seed | |
except Exception as e: | |
return None, f"Error generating image: {str(e)}" | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
def preload_models(): | |
print("Préchargement des modèles...") | |
try: | |
# Préchargement du modèle de génération de texte | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Explicitly load the fast tokenizer LGR | |
tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
use_fast=True # Ensures a fast tokenizer is used | |
) | |
_text_gen_pipeline = pipeline( | |
"text-generation", | |
model="mistralai/Mistral-7B-Instruct-v0.3", | |
tokenizer=tokenizer, # Pass the fast tokenizer in LGR | |
max_new_tokens=2048, | |
device=device, | |
) | |
# Préchargement du modèle de génération d'images | |
dtype = torch.bfloat16 | |
_image_gen_pipeline = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype | |
).to(device) | |
print("Modèles préchargés avec succès!") | |
return True | |
except Exception as e: | |
print(f"Erreur lors du préchargement des modèles: {str(e)}") | |
return False | |
def create_interface(): | |
# Préchargement des modèles | |
models_loaded = preload_models() | |
if not models_loaded: | |
model_status = "⚠️ Erreur lors du chargement des modèles" | |
else: | |
model_status = "✅ Modèles chargés avec succès!" | |
with gr.Blocks(css=css) as demo: | |
info = gr.Info(model_status) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# Text to Product | |
Using Mistral + Flux + Trellis | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
prompt_button = gr.Button("Refine prompt", scale=0) | |
refined_prompt = gr.Text( | |
label="Refined Prompt", | |
show_label=False, | |
max_lines=10, | |
placeholder="Prompt refined by Mistral", | |
container=False, | |
max_length=2048, | |
) | |
run_button = gr.Button("Create visual", scale=0) | |
generated_image = gr.Image(label="Generated Image", show_label=False) | |
with gr.Accordion("Advanced Settings Mistral", open=False): | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
with gr.Accordion("Advanced Settings Flux", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
gr.Examples( | |
examples=[ | |
"a backpack for kids, flower style", | |
"medieval flip flops", | |
"cat shaped cake mold" | |
], | |
fn=refine_prompt, | |
inputs = [prompt], | |
outputs = [refined_prompt], | |
cache_examples=True, | |
cache_mode='lazy' | |
) | |
gr.on( | |
triggers=[prompt_button.click, prompt.submit], | |
fn = refine_prompt, | |
inputs = [prompt], | |
outputs = [refined_prompt] | |
) | |
gr.on( | |
triggers=[run_button.click], | |
fn = infer, | |
inputs = [refined_prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs = [generated_image, seed] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch() |