lionelgarnier
typo
c943e2c
raw
history blame
12.2 kB
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login
hf_token = os.getenv("hf_token")
login(token=hf_token)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
_text_gen_pipeline = None
_image_gen_pipeline = None
@spaces.GPU()
def get_image_gen_pipeline():
global _image_gen_pipeline
if _image_gen_pipeline is None:
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
# Load fast tokenizer for the image pipeline
# tokenizer = AutoTokenizer.from_pretrained(
# "black-forest-labs/FLUX.1-schnell",
# # "black-forest-labs/FLUX.1-dev",
# use_fast=True
# )
_image_gen_pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
# "black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
# tokenizer=tokenizer
).to(device)
except Exception as e:
print(f"Error loading image generation model: {e}")
return None
return _image_gen_pipeline
@spaces.GPU()
def get_text_gen_pipeline():
global _text_gen_pipeline
if _text_gen_pipeline is None:
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.3",
use_fast=True
)
_text_gen_pipeline = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.3",
tokenizer=tokenizer,
max_new_tokens=2048,
device=device,
)
except Exception as e:
print(f"Error loading text generation model: {e}")
return None
return _text_gen_pipeline
@spaces.GPU()
def refine_prompt(prompt):
text_gen = get_text_gen_pipeline()
if text_gen is None:
return "Text generation model is unavailable."
try:
messages = [
{"role": "system", "content": "Vous êtes un designer produit avec de solides connaissances dans la génération de texte en image. Vous recevrez une demande de produit sous forme de description succincte, et votre mission sera d'imaginer un nouveau design de produit répondant à ce besoin.\n\nLe livrable (réponse générée) sera exclusivement un texte de prompt pour l'IA de texte to image FLUX.1-schnell.\n\nCe prompt devra inclure une description visuelle de l'objet mentionnant explicitement les aspects indispensables de sa fonction.\nA coté de ça vous devez aussi explicitement mentionner dans ce prompt les caractéristiques esthétiques/photo du rendu image (ex : photoréaliste, haute qualité, focale, grain, etc.), sachant que l'image sera l'image principale de cet objet dans le catalogue produit. Le fond de l'image générée doit être entièrement blanc.\nLe prompt doit être sans narration, peut être long mais ne doit pas dépasser 2048 jetons."}, {"role": "user", "content": prompt},
]
refined_prompt = text_gen(messages)
# Extract just the assistant's content from the response
try:
messages = refined_prompt[0]['generated_text']
# Find the last message with role 'assistant'
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant']
if not assistant_messages:
return "Error: No assistant response found"
assistant_content = assistant_messages[-1]['content']
return assistant_content
except (KeyError, IndexError):
return "Error: Unexpected response format from the model"
except Exception as e:
return f"Error refining prompt: {str(e)}"
def validate_dimensions(width, height):
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
return False, "Image dimensions too large"
return True, None
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
try:
progress(0, desc="Starting generation...")
pipe = get_image_gen_pipeline()
if pipe is None:
return None, "Image generation model is unavailable."
# Validate that prompt is not empty
if not prompt or prompt.strip() == "":
return None, "Please provide a valid prompt."
# Validate width/height dimensions
is_valid, error_msg = validate_dimensions(width, height)
if not is_valid:
return None, error_msg
if randomize_seed:
seed = random.randint(0, MAX_SEED)
progress(0.2, desc="Setting up generator...")
generator = torch.Generator().manual_seed(seed)
progress(0.4, desc="Generating image...")
with torch.autocast('cuda'):
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=5.0,
max_sequence_length=2048
).images[0]
torch.cuda.empty_cache() # Clean up GPU memory after generation
progress(1.0, desc="Done!")
return image, seed
except Exception as e:
return None, f"Error generating image: {str(e)}"
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def preload_models():
print("Préchargement des modèles...")
try:
# Préchargement du modèle de génération de texte
device = "cuda" if torch.cuda.is_available() else "cpu"
# Explicitly load the fast tokenizer LGR
tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.3",
use_fast=True # Ensures a fast tokenizer is used
)
_text_gen_pipeline = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.3",
tokenizer=tokenizer, # Pass the fast tokenizer in LGR
max_new_tokens=2048,
device=device,
)
# Préchargement du modèle de génération d'images
dtype = torch.bfloat16
_image_gen_pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
print("Modèles préchargés avec succès!")
return True
except Exception as e:
print(f"Erreur lors du préchargement des modèles: {str(e)}")
return False
def create_interface():
# Préchargement des modèles
models_loaded = preload_models()
if not models_loaded:
model_status = "⚠️ Erreur lors du chargement des modèles"
else:
model_status = "✅ Modèles chargés avec succès!"
with gr.Blocks(css=css) as demo:
info = gr.Info(model_status)
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Text to Product
Using Mistral + Flux + Trellis
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
prompt_button = gr.Button("Refine prompt", scale=0)
refined_prompt = gr.Text(
label="Refined Prompt",
show_label=False,
max_lines=10,
placeholder="Prompt refined by Mistral",
container=False,
max_length=2048,
)
run_button = gr.Button("Create visual", scale=0)
generated_image = gr.Image(label="Generated Image", show_label=False)
with gr.Accordion("Advanced Settings Mistral", open=False):
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Accordion("Advanced Settings Flux", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=[
"a backpack for kids, flower style",
"medieval flip flops",
"cat shaped cake mold"
],
fn=refine_prompt,
inputs = [prompt],
outputs = [refined_prompt],
cache_examples=True,
cache_mode='lazy'
)
gr.on(
triggers=[prompt_button.click, prompt.submit],
fn = refine_prompt,
inputs = [prompt],
outputs = [refined_prompt]
)
gr.on(
triggers=[run_button.click],
fn = infer,
inputs = [refined_prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [generated_image, seed]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()