Spaces:
Runtime error
Runtime error
lionelgarnier
refactor session management and update event handlers for improved clarity and functionality
cc9aa28
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from transformers import pipeline, AutoTokenizer | |
from huggingface_hub import login | |
from PIL import Image | |
from gradio_litmodel3d import LitModel3D | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import imageio | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
hf_token = os.getenv("hf_token") | |
login(token=hf_token) | |
# Global constants and default values | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
PRELOAD_MODELS = False | |
# Default system prompt for text generation | |
DEFAULT_SYSTEM_PROMPT = """You are a product designer with strong knowledge in text-to-image generation. You will receive a product request in the form of a brief description, and your mission will be to imagine a new product design that meets this need. | |
The deliverable (generated response) will be exclusively a text prompt for the FLUX.1-schnell text-to-image AI. | |
This prompt should include a visual description of the object explicitly mentioning the essential aspects of its function. | |
Additionally, you should explicitly mention in this prompt the aesthetic/photo characteristics of the image rendering (e.g., photorealistic, high quality, focal length, grain, etc.), knowing that the image will be the main image of this object in the product catalog. The background of the generated image must be entirely white. | |
The prompt should be without narration, can be long but must not exceed 77 tokens.""" | |
# Default Flux parameters | |
DEFAULT_SEED = 42 | |
DEFAULT_RANDOMIZE_SEED = True | |
DEFAULT_WIDTH = 512 | |
DEFAULT_HEIGHT = 512 | |
DEFAULT_NUM_INFERENCE_STEPS = 6 | |
DEFAULT_GUIDANCE_SCALE = 0.0 | |
DEFAULT_TEMPERATURE = 0.9 | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
_text_gen_pipeline = None | |
_image_gen_pipeline = None | |
_trellis_pipeline = None | |
def start_session(req: gr.Request): | |
"""Create a temporary directory for the user session""" | |
try: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
print(f"Session started: {req.session_hash}") | |
except Exception as e: | |
print(f"Error starting session: {str(e)}") | |
def end_session(req: gr.Request): | |
"""Clean up the temporary directory when the session ends""" | |
try: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
if os.path.exists(user_dir): | |
shutil.rmtree(user_dir) | |
print(f"Session ended: {req.session_hash}") | |
except Exception as e: | |
print(f"Error ending session: {str(e)}") | |
def get_image_gen_pipeline(): | |
global _image_gen_pipeline | |
if (_image_gen_pipeline is None): | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.bfloat16 | |
_image_gen_pipeline = DiffusionPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=dtype, | |
).to(device) | |
# Comment these out for now to match the working example | |
# _image_gen_pipeline.enable_model_cpu_offload() | |
# _image_gen_pipeline.enable_vae_slicing() | |
except Exception as e: | |
print(f"Error loading image generation model: {e}") | |
return None | |
return _image_gen_pipeline | |
def get_text_gen_pipeline(): | |
global _text_gen_pipeline | |
if (_text_gen_pipeline is None): | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
use_fast=True | |
) | |
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token | |
_text_gen_pipeline = pipeline( | |
"text-generation", | |
model="mistralai/Mistral-7B-Instruct-v0.3", | |
tokenizer=tokenizer, | |
max_new_tokens=2048, | |
device=device, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
except Exception as e: | |
print(f"Error loading text generation model: {e}") | |
return None | |
return _text_gen_pipeline | |
def get_trellis_pipeline(): | |
global _trellis_pipeline | |
if _trellis_pipeline is None: | |
try: | |
print("Loading Trellis pipeline...") | |
_trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
_trellis_pipeline.cuda() | |
# Preload rembg by processing a small test image | |
try: | |
_trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
except Exception as e: | |
print(f"Warning when preloading rembg: {e}") | |
except Exception as e: | |
print(f"Error loading Trellis pipeline: {e}") | |
return None | |
return _trellis_pipeline | |
def refine_prompt(prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()): | |
text_gen = get_text_gen_pipeline() | |
if text_gen is None: | |
return "", "Text generation model is unavailable." | |
try: | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt}, | |
] | |
# Indicate progress started | |
progress(0, desc="Generating text") | |
# Generate text | |
refined_prompt = text_gen(messages) | |
# Indicate progress complete | |
progress(1) | |
# Extract just the assistant's content from the response | |
try: | |
messages = refined_prompt[0]['generated_text'] | |
# Find the last message with role 'assistant' | |
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant'] | |
if not assistant_messages: | |
return "", "Error: No assistant response found" | |
assistant_content = assistant_messages[-1]['content'] | |
# Remove quotation marks at the beginning and end | |
if assistant_content.startswith('"') and assistant_content.endswith('"'): | |
assistant_content = assistant_content[1:-1] | |
return assistant_content, "Prompt refined successfully!" | |
except (KeyError, IndexError): | |
return "", "Error: Unexpected response format from the model" | |
except Exception as e: | |
print(f"Error in refine_prompt: {str(e)}") # Add debug print | |
return "", f"Error refining prompt: {str(e)}" | |
def validate_dimensions(width, height): | |
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE: | |
return False, "Image dimensions too large" | |
return True, None | |
def infer(prompt, seed=DEFAULT_SEED, | |
randomize_seed=DEFAULT_RANDOMIZE_SEED, | |
width=DEFAULT_WIDTH, | |
height=DEFAULT_HEIGHT, | |
num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS, | |
progress=gr.Progress(track_tqdm=True)): | |
try: | |
# Validate that prompt is not empty | |
if not prompt or prompt.strip() == "": | |
return None, "Please provide a valid prompt." | |
progress(0.1, desc="Loading model") | |
pipe = get_image_gen_pipeline() | |
if pipe is None: | |
return None, "Image generation model is unavailable." | |
is_valid, error_msg = validate_dimensions(width, height) | |
if not is_valid: | |
return None, error_msg | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Use default torch generator instead of cuda-specific generator | |
generator = torch.Generator().manual_seed(seed) | |
progress(0.3, desc="Running inference") | |
# Match the working example's parameters | |
output = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=DEFAULT_GUIDANCE_SCALE, | |
) | |
progress(0.8, desc="Processing output") | |
image = output.images[0] | |
progress(1.0, desc="Complete") | |
return image, f"Image generated successfully with seed {seed}" | |
except Exception as e: | |
print(f"Error in infer: {str(e)}") | |
return None, f"Error generating image: {str(e)}" | |
examples = [ | |
"a backpack for kids, flower style", | |
"medieval flip flops", | |
"cat shaped cake mold", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
def preload_models(): | |
print("Preloading models...") | |
text_success = get_text_gen_pipeline() is not None | |
image_success = get_image_gen_pipeline() is not None | |
trellis_success = get_trellis_pipeline() is not None | |
success = text_success and image_success and trellis_success | |
status_parts = [] | |
if text_success: | |
status_parts.append("Mistral ✓") | |
else: | |
status_parts.append("Mistral ✗") | |
if image_success: | |
status_parts.append("Flux ✓") | |
else: | |
status_parts.append("Flux ✗") | |
if trellis_success: | |
status_parts.append("Trellis ✓") | |
else: | |
status_parts.append("Trellis ✗") | |
status = f"Models loaded: {', '.join(status_parts)}" | |
print(status) | |
return success, status | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def image_to_3d( | |
image: Image.Image, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
try: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
# Get the pipeline using the getter function | |
pipeline = get_trellis_pipeline() | |
if pipeline is None: | |
return None, "Trellis pipeline is unavailable." | |
outputs = pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
except Exception as e: | |
print(f"Error in image_to_3d: {str(e)}") | |
return None, f"Error generating 3D model: {str(e)}" | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
""" | |
Extract a Gaussian file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
Returns: | |
str: The path to the extracted Gaussian file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, _ = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
# Create a combined function that handles the whole pipeline from example to image | |
# This version gets the parameters from the UI components | |
def process_example_pipeline(example_prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()): | |
# Step 1: Update status | |
progress(0, desc="Starting example processing") | |
# Step 2: Refine the prompt | |
progress(0.1, desc="Refining prompt with Mistral") | |
refined, status = refine_prompt(example_prompt, system_prompt, progress) | |
if not refined: | |
return "", "Failed to refine prompt: " + status | |
# Return only the refined prompt and status - don't generate image | |
return refined, "Prompt refined successfully!" | |
def create_interface(): | |
# Preload models if needed | |
if PRELOAD_MODELS: | |
model_success, model_status_details = preload_models() | |
model_status = f"✅ {model_status_details}" if model_success else f"⚠️ {model_status_details}" | |
else: | |
model_status = "ℹ️ Models will be loaded on demand" | |
with gr.Blocks(css=css) as demo: | |
# Set up session management - COMMENT THESE OUT FOR TESTING | |
# demo.load(start_session) | |
# demo.unload(end_session) | |
gr.Info(model_status) | |
# State for storing 3D model data | |
output_state = gr.State(None) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# Text to Product\nUsing Mistral-7B + FLUX.1-dev + Trellis") | |
prompt = gr.Text( | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter basic object prompt", | |
container=False, | |
) | |
prompt_button = gr.Button("Refine prompt with Mistral") | |
refined_prompt = gr.Text( | |
show_label=False, | |
max_lines=10, | |
placeholder="Detailed object prompt", | |
container=False, | |
max_length=2048, | |
) | |
visual_button = gr.Button("Create visual with Flux") | |
generated_image = gr.Image(show_label=False) | |
gen3d_button = gr.Button("Create 3D visual with Trellis") | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) | |
with gr.Row(): | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
message_box = gr.Textbox( | |
label="Status Messages", | |
interactive=False, | |
placeholder="Status messages will appear here", | |
) | |
# Accordion sections for advanced settings | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Tab("Mistral"): | |
# Mistral settings | |
temperature = gr.Slider( | |
label="Temperature", | |
value=DEFAULT_TEMPERATURE, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
info="Higher values produce more diverse outputs", | |
) | |
system_prompt = gr.Textbox( | |
label="System Prompt", | |
value=DEFAULT_SYSTEM_PROMPT, | |
lines=10, | |
info="Instructions for the Mistral model" | |
) | |
with gr.Tab("Flux"): | |
# Flux settings | |
flux_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED) | |
flux_randomize_seed = gr.Checkbox(label="Randomize seed", value=DEFAULT_RANDOMIZE_SEED) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=DEFAULT_NUM_INFERENCE_STEPS, | |
) | |
with gr.Tab("3D Generation Settings"): | |
trellis_seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
trellis_randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
with gr.Tab("GLB Extraction Settings"): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
gr.Markdown(""" | |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
""") | |
output_buf = gr.State() | |
# Examples section - simplified version that only updates the prompt fields | |
gr.Examples( | |
examples=examples, | |
fn=process_example_pipeline, | |
inputs=[prompt], | |
outputs=[refined_prompt, message_box], | |
cache_examples=True, | |
) | |
# Event handlers - Fixed to use the renamed components | |
gr.on( | |
triggers=[prompt_button.click, prompt.submit], | |
fn=refine_prompt, | |
inputs=[prompt, system_prompt], | |
outputs=[refined_prompt, message_box] | |
) | |
gr.on( | |
triggers=[visual_button.click], | |
fn=infer, | |
inputs=[refined_prompt, flux_seed, flux_randomize_seed, width, height, num_inference_steps], | |
outputs=[generated_image, message_box] | |
) | |
gr.on( | |
triggers=[gen3d_button.click], | |
fn=image_to_3d, | |
inputs=[generated_image, trellis_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_state, video_output], | |
).then( | |
# Update button states after successful 3D generation | |
lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True), "3D model generated successfully"), | |
outputs=[extract_glb_btn, extract_gs_btn, message_box] | |
) | |
# Add handlers for GLB and Gaussian extraction | |
gr.on( | |
triggers=[extract_glb_btn.click], | |
fn=extract_glb, | |
inputs=[output_state, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb] | |
).then( | |
lambda path: (gr.DownloadButton.update(interactive=True, value=path), "GLB extraction completed"), | |
inputs=[model_output], | |
outputs=[download_glb, message_box] | |
) | |
gr.on( | |
triggers=[extract_gs_btn.click], | |
fn=extract_gaussian, | |
inputs=[output_state], | |
outputs=[model_output, download_gs] | |
).then( | |
lambda path: (gr.DownloadButton.update(interactive=True, value=path), "Gaussian extraction completed"), | |
inputs=[model_output], | |
outputs=[download_gs, message_box] | |
) | |
return demo | |
if __name__ == "__main__": | |
# Initialize models if PRELOAD_MODELS is True | |
if PRELOAD_MODELS: | |
success, status = preload_models() | |
print(status) | |
demo = create_interface() | |
demo.launch() |