Spaces:
Runtime error
Runtime error
lionelgarnier
commited on
Commit
·
008680f
1
Parent(s):
bd71366
deactivate 3D
Browse files
app.py
CHANGED
@@ -163,7 +163,7 @@ def validate_dimensions(width, height):
|
|
163 |
return True, None
|
164 |
|
165 |
@spaces.GPU()
|
166 |
-
def
|
167 |
randomize_seed=DEFAULT_RANDOMIZE_SEED,
|
168 |
width=DEFAULT_WIDTH,
|
169 |
height=DEFAULT_HEIGHT,
|
@@ -251,136 +251,136 @@ def preload_models():
|
|
251 |
return success, status
|
252 |
|
253 |
|
254 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
|
270 |
|
271 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
@spaces.GPU
|
295 |
-
def image_to_3d(
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
) -> Tuple[dict, str]:
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
@spaces.GPU(duration=90)
|
342 |
-
def extract_glb(
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
) -> Tuple[str, str]:
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
@spaces.GPU
|
368 |
-
def extract_gaussian(state: dict) -> Tuple[str, str]:
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
|
385 |
|
386 |
# Create a combined function that handles the whole pipeline from example to image
|
@@ -435,14 +435,14 @@ def create_interface():
|
|
435 |
visual_button = gr.Button("Create visual with Flux")
|
436 |
|
437 |
generated_image = gr.Image(show_label=False)
|
438 |
-
gen3d_button = gr.Button("Create 3D visual with Trellis")
|
439 |
|
440 |
-
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
441 |
-
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
442 |
|
443 |
-
with gr.Row():
|
444 |
-
|
445 |
-
|
446 |
|
447 |
message_box = gr.Textbox(
|
448 |
label="Status Messages",
|
@@ -487,28 +487,28 @@ def create_interface():
|
|
487 |
value=DEFAULT_NUM_INFERENCE_STEPS,
|
488 |
)
|
489 |
|
490 |
-
with gr.Tab("3D Generation Settings"):
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
with gr.Tab("GLB Extraction Settings"):
|
503 |
-
|
504 |
-
|
505 |
|
506 |
-
with gr.Row():
|
507 |
-
|
508 |
-
|
509 |
-
gr.Markdown("""
|
510 |
-
|
511 |
-
|
512 |
|
513 |
output_buf = gr.State()
|
514 |
|
@@ -531,44 +531,44 @@ def create_interface():
|
|
531 |
|
532 |
gr.on(
|
533 |
triggers=[visual_button.click],
|
534 |
-
fn=
|
535 |
inputs=[refined_prompt, flux_seed, flux_randomize_seed, width, height, num_inference_steps],
|
536 |
outputs=[generated_image, message_box]
|
537 |
)
|
538 |
|
539 |
-
gr.on(
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
).then(
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
)
|
549 |
|
550 |
-
# Add handlers for GLB and Gaussian extraction
|
551 |
-
gr.on(
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
).then(
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
)
|
561 |
-
|
562 |
-
gr.on(
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
).then(
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
)
|
572 |
|
573 |
return demo
|
574 |
|
|
|
163 |
return True, None
|
164 |
|
165 |
@spaces.GPU()
|
166 |
+
def generate_image(prompt, seed=DEFAULT_SEED,
|
167 |
randomize_seed=DEFAULT_RANDOMIZE_SEED,
|
168 |
width=DEFAULT_WIDTH,
|
169 |
height=DEFAULT_HEIGHT,
|
|
|
251 |
return success, status
|
252 |
|
253 |
|
254 |
+
# def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
255 |
+
# return {
|
256 |
+
# 'gaussian': {
|
257 |
+
# **gs.init_params,
|
258 |
+
# '_xyz': gs._xyz.cpu().numpy(),
|
259 |
+
# '_features_dc': gs._features_dc.cpu().numpy(),
|
260 |
+
# '_scaling': gs._scaling.cpu().numpy(),
|
261 |
+
# '_rotation': gs._rotation.cpu().numpy(),
|
262 |
+
# '_opacity': gs._opacity.cpu().numpy(),
|
263 |
+
# },
|
264 |
+
# 'mesh': {
|
265 |
+
# 'vertices': mesh.vertices.cpu().numpy(),
|
266 |
+
# 'faces': mesh.faces.cpu().numpy(),
|
267 |
+
# },
|
268 |
+
# }
|
269 |
|
270 |
|
271 |
+
# def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
272 |
+
# gs = Gaussian(
|
273 |
+
# aabb=state['gaussian']['aabb'],
|
274 |
+
# sh_degree=state['gaussian']['sh_degree'],
|
275 |
+
# mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
276 |
+
# scaling_bias=state['gaussian']['scaling_bias'],
|
277 |
+
# opacity_bias=state['gaussian']['opacity_bias'],
|
278 |
+
# scaling_activation=state['gaussian']['scaling_activation'],
|
279 |
+
# )
|
280 |
+
# gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
281 |
+
# gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
282 |
+
# gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
283 |
+
# gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
284 |
+
# gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
285 |
|
286 |
+
# mesh = edict(
|
287 |
+
# vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
288 |
+
# faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
289 |
+
# )
|
290 |
|
291 |
+
# return gs, mesh
|
292 |
+
|
293 |
+
|
294 |
+
# @spaces.GPU
|
295 |
+
# def image_to_3d(
|
296 |
+
# image: Image.Image,
|
297 |
+
# seed: int,
|
298 |
+
# ss_guidance_strength: float,
|
299 |
+
# ss_sampling_steps: int,
|
300 |
+
# slat_guidance_strength: float,
|
301 |
+
# slat_sampling_steps: int,
|
302 |
+
# ) -> Tuple[dict, str]:
|
303 |
+
# try:
|
304 |
+
# # Use a fixed temp directory instead of user-specific
|
305 |
+
# temp_dir = os.path.join(TMP_DIR, "temp_output")
|
306 |
+
# os.makedirs(temp_dir, exist_ok=True)
|
307 |
|
308 |
+
# # Get the pipeline using the getter function
|
309 |
+
# pipeline = get_trellis_pipeline()
|
310 |
+
# if pipeline is None:
|
311 |
+
# return None, "Trellis pipeline is unavailable."
|
312 |
|
313 |
+
# outputs = pipeline.run(
|
314 |
+
# image,
|
315 |
+
# seed=seed,
|
316 |
+
# formats=["gaussian", "mesh"],
|
317 |
+
# preprocess_image=False,
|
318 |
+
# sparse_structure_sampler_params={
|
319 |
+
# "steps": ss_sampling_steps,
|
320 |
+
# "cfg_strength": ss_guidance_strength,
|
321 |
+
# },
|
322 |
+
# slat_sampler_params={
|
323 |
+
# "steps": slat_sampling_steps,
|
324 |
+
# "cfg_strength": slat_guidance_strength,
|
325 |
+
# },
|
326 |
+
# )
|
327 |
+
|
328 |
+
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
329 |
+
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
330 |
+
# video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
331 |
+
# video_path = os.path.join(temp_dir, 'sample.mp4')
|
332 |
+
# imageio.mimsave(video_path, video, fps=15)
|
333 |
+
# state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
334 |
+
# torch.cuda.empty_cache()
|
335 |
+
# return state, video_path
|
336 |
+
# except Exception as e:
|
337 |
+
# print(f"Error in image_to_3d: {str(e)}")
|
338 |
+
# return None, f"Error generating 3D model: {str(e)}"
|
339 |
+
|
340 |
+
|
341 |
+
# @spaces.GPU(duration=90)
|
342 |
+
# def extract_glb(
|
343 |
+
# state: dict,
|
344 |
+
# mesh_simplify: float,
|
345 |
+
# texture_size: int,
|
346 |
+
# ) -> Tuple[str, str]:
|
347 |
+
# """
|
348 |
+
# Extract a GLB file from the 3D model.
|
349 |
+
|
350 |
+
# Args:
|
351 |
+
# state (dict): The state of the generated 3D model.
|
352 |
+
# mesh_simplify (float): The mesh simplification factor.
|
353 |
+
# texture_size (int): The texture resolution.
|
354 |
+
|
355 |
+
# Returns:
|
356 |
+
# str: The path to the extracted GLB file.
|
357 |
+
# """
|
358 |
+
# temp_dir = os.path.join(TMP_DIR, "temp_output")
|
359 |
+
# gs, mesh = unpack_state(state)
|
360 |
+
# glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
361 |
+
# glb_path = os.path.join(temp_dir, 'sample.glb')
|
362 |
+
# glb.export(glb_path)
|
363 |
+
# torch.cuda.empty_cache()
|
364 |
+
# return glb_path, glb_path
|
365 |
+
|
366 |
+
|
367 |
+
# @spaces.GPU
|
368 |
+
# def extract_gaussian(state: dict) -> Tuple[str, str]:
|
369 |
+
# """
|
370 |
+
# Extract a Gaussian file from the 3D model.
|
371 |
+
|
372 |
+
# Args:
|
373 |
+
# state (dict): The state of the generated 3D model.
|
374 |
+
|
375 |
+
# Returns:
|
376 |
+
# str: The path to the extracted Gaussian file.
|
377 |
+
# """
|
378 |
+
# temp_dir = os.path.join(TMP_DIR, "temp_output")
|
379 |
+
# gs, _ = unpack_state(state)
|
380 |
+
# gaussian_path = os.path.join(temp_dir, 'sample.ply')
|
381 |
+
# gs.save_ply(gaussian_path)
|
382 |
+
# torch.cuda.empty_cache()
|
383 |
+
# return gaussian_path, gaussian_path
|
384 |
|
385 |
|
386 |
# Create a combined function that handles the whole pipeline from example to image
|
|
|
435 |
visual_button = gr.Button("Create visual with Flux")
|
436 |
|
437 |
generated_image = gr.Image(show_label=False)
|
438 |
+
# gen3d_button = gr.Button("Create 3D visual with Trellis")
|
439 |
|
440 |
+
# video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
441 |
+
# model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
442 |
|
443 |
+
# with gr.Row():
|
444 |
+
# download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
445 |
+
# download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
446 |
|
447 |
message_box = gr.Textbox(
|
448 |
label="Status Messages",
|
|
|
487 |
value=DEFAULT_NUM_INFERENCE_STEPS,
|
488 |
)
|
489 |
|
490 |
+
# with gr.Tab("3D Generation Settings"):
|
491 |
+
# trellis_seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
492 |
+
# trellis_randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
493 |
+
# gr.Markdown("Stage 1: Sparse Structure Generation")
|
494 |
+
# with gr.Row():
|
495 |
+
# ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
496 |
+
# ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
497 |
+
# gr.Markdown("Stage 2: Structured Latent Generation")
|
498 |
+
# with gr.Row():
|
499 |
+
# slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
500 |
+
# slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
501 |
+
|
502 |
+
# with gr.Tab("GLB Extraction Settings"):
|
503 |
+
# mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
504 |
+
# texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
505 |
|
506 |
+
# with gr.Row():
|
507 |
+
# extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
508 |
+
# extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
509 |
+
# gr.Markdown("""
|
510 |
+
# *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
511 |
+
# """)
|
512 |
|
513 |
output_buf = gr.State()
|
514 |
|
|
|
531 |
|
532 |
gr.on(
|
533 |
triggers=[visual_button.click],
|
534 |
+
fn=generate_image,
|
535 |
inputs=[refined_prompt, flux_seed, flux_randomize_seed, width, height, num_inference_steps],
|
536 |
outputs=[generated_image, message_box]
|
537 |
)
|
538 |
|
539 |
+
# gr.on(
|
540 |
+
# triggers=[gen3d_button.click],
|
541 |
+
# fn=image_to_3d,
|
542 |
+
# inputs=[generated_image, trellis_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
543 |
+
# outputs=[output_state, video_output],
|
544 |
+
# ).then(
|
545 |
+
# # Update button states after successful 3D generation
|
546 |
+
# lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True), "3D model generated successfully"),
|
547 |
+
# outputs=[extract_glb_btn, extract_gs_btn, message_box]
|
548 |
+
# )
|
549 |
|
550 |
+
# # Add handlers for GLB and Gaussian extraction
|
551 |
+
# gr.on(
|
552 |
+
# triggers=[extract_glb_btn.click],
|
553 |
+
# fn=extract_glb,
|
554 |
+
# inputs=[output_state, mesh_simplify, texture_size],
|
555 |
+
# outputs=[model_output, download_glb]
|
556 |
+
# ).then(
|
557 |
+
# lambda path: (gr.DownloadButton.update(interactive=True, value=path), "GLB extraction completed"),
|
558 |
+
# inputs=[model_output],
|
559 |
+
# outputs=[download_glb, message_box]
|
560 |
+
# )
|
561 |
+
|
562 |
+
# gr.on(
|
563 |
+
# triggers=[extract_gs_btn.click],
|
564 |
+
# fn=extract_gaussian,
|
565 |
+
# inputs=[output_state],
|
566 |
+
# outputs=[model_output, download_gs]
|
567 |
+
# ).then(
|
568 |
+
# lambda path: (gr.DownloadButton.update(interactive=True, value=path), "Gaussian extraction completed"),
|
569 |
+
# inputs=[model_output],
|
570 |
+
# outputs=[download_gs, message_box]
|
571 |
+
# )
|
572 |
|
573 |
return demo
|
574 |
|