Spaces:
Runtime error
Runtime error
lionelgarnier
commited on
Commit
·
07db937
1
Parent(s):
862266f
debug 2
Browse files
app.py
CHANGED
@@ -33,176 +33,176 @@ def end_session(req: gr.Request):
|
|
33 |
shutil.rmtree(user_dir)
|
34 |
|
35 |
|
36 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
|
67 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
@spaces.GPU
|
98 |
-
def image_to_3d(
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
) -> Tuple[dict, str]:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
@spaces.GPU(duration=90)
|
148 |
-
def extract_glb(
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
) -> Tuple[str, str]:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
@spaces.GPU
|
175 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
def split_image(image: Image.Image) -> List[Image.Image]:
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
|
208 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
@@ -257,52 +257,52 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
257 |
demo.unload(end_session)
|
258 |
|
259 |
|
260 |
-
image_prompt.upload(
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
)
|
265 |
-
|
266 |
-
generate_btn.click(
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
).then(
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
).then(
|
275 |
-
|
276 |
-
|
277 |
-
)
|
278 |
-
|
279 |
-
video_output.clear(
|
280 |
-
|
281 |
-
|
282 |
-
)
|
283 |
-
|
284 |
-
extract_glb_btn.click(
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
).then(
|
289 |
-
|
290 |
-
|
291 |
-
)
|
292 |
|
293 |
-
extract_gs_btn.click(
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
).then(
|
298 |
-
|
299 |
-
|
300 |
-
)
|
301 |
-
|
302 |
-
model_output.clear(
|
303 |
-
|
304 |
-
|
305 |
-
)
|
306 |
|
307 |
|
308 |
# Launch the Gradio app
|
|
|
33 |
shutil.rmtree(user_dir)
|
34 |
|
35 |
|
36 |
+
# def preprocess_image(image: Image.Image) -> Image.Image:
|
37 |
+
# """
|
38 |
+
# Preprocess the input image.
|
39 |
+
|
40 |
+
# Args:
|
41 |
+
# image (Image.Image): The input image.
|
42 |
+
|
43 |
+
# Returns:
|
44 |
+
# Image.Image: The preprocessed image.
|
45 |
+
# """
|
46 |
+
# processed_image = pipeline.preprocess_image(image)
|
47 |
+
# return processed_image
|
48 |
+
|
49 |
+
|
50 |
+
# def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
51 |
+
# return {
|
52 |
+
# 'gaussian': {
|
53 |
+
# **gs.init_params,
|
54 |
+
# '_xyz': gs._xyz.cpu().numpy(),
|
55 |
+
# '_features_dc': gs._features_dc.cpu().numpy(),
|
56 |
+
# '_scaling': gs._scaling.cpu().numpy(),
|
57 |
+
# '_rotation': gs._rotation.cpu().numpy(),
|
58 |
+
# '_opacity': gs._opacity.cpu().numpy(),
|
59 |
+
# },
|
60 |
+
# 'mesh': {
|
61 |
+
# 'vertices': mesh.vertices.cpu().numpy(),
|
62 |
+
# 'faces': mesh.faces.cpu().numpy(),
|
63 |
+
# },
|
64 |
+
# }
|
65 |
|
66 |
|
67 |
+
# def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
68 |
+
# gs = Gaussian(
|
69 |
+
# aabb=state['gaussian']['aabb'],
|
70 |
+
# sh_degree=state['gaussian']['sh_degree'],
|
71 |
+
# mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
72 |
+
# scaling_bias=state['gaussian']['scaling_bias'],
|
73 |
+
# opacity_bias=state['gaussian']['opacity_bias'],
|
74 |
+
# scaling_activation=state['gaussian']['scaling_activation'],
|
75 |
+
# )
|
76 |
+
# gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
77 |
+
# gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
78 |
+
# gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
79 |
+
# gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
80 |
+
# gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
81 |
|
82 |
+
# mesh = edict(
|
83 |
+
# vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
84 |
+
# faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
85 |
+
# )
|
86 |
|
87 |
+
# return gs, mesh
|
88 |
+
|
89 |
+
|
90 |
+
# def get_seed(randomize_seed: bool, seed: int) -> int:
|
91 |
+
# """
|
92 |
+
# Get the random seed.
|
93 |
+
# """
|
94 |
+
# return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
95 |
+
|
96 |
+
|
97 |
+
# @spaces.GPU
|
98 |
+
# def image_to_3d(
|
99 |
+
# image: Image.Image,
|
100 |
+
# seed: int,
|
101 |
+
# ss_guidance_strength: float,
|
102 |
+
# ss_sampling_steps: int,
|
103 |
+
# slat_guidance_strength: float,
|
104 |
+
# slat_sampling_steps: int,
|
105 |
+
# req: gr.Request,
|
106 |
+
# ) -> Tuple[dict, str]:
|
107 |
+
# """
|
108 |
+
# Convert an image to a 3D model.
|
109 |
+
|
110 |
+
# Args:
|
111 |
+
# image (Image.Image): The input image.
|
112 |
+
# seed (int): The random seed.
|
113 |
+
# ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
114 |
+
# ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
115 |
+
# slat_guidance_strength (float): The guidance strength for structured latent generation.
|
116 |
+
# slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
117 |
+
|
118 |
+
# Returns:
|
119 |
+
# dict: The information of the generated 3D model.
|
120 |
+
# str: The path to the video of the 3D model.
|
121 |
+
# """
|
122 |
+
# user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
123 |
+
# outputs = pipeline.run(
|
124 |
+
# image,
|
125 |
+
# seed=seed,
|
126 |
+
# formats=["gaussian", "mesh"],
|
127 |
+
# preprocess_image=False,
|
128 |
+
# sparse_structure_sampler_params={
|
129 |
+
# "steps": ss_sampling_steps,
|
130 |
+
# "cfg_strength": ss_guidance_strength,
|
131 |
+
# },
|
132 |
+
# slat_sampler_params={
|
133 |
+
# "steps": slat_sampling_steps,
|
134 |
+
# "cfg_strength": slat_guidance_strength,
|
135 |
+
# },
|
136 |
+
# )
|
137 |
+
# video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
138 |
+
# video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
139 |
+
# video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
140 |
+
# video_path = os.path.join(user_dir, 'sample.mp4')
|
141 |
+
# imageio.mimsave(video_path, video, fps=15)
|
142 |
+
# state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
143 |
+
# torch.cuda.empty_cache()
|
144 |
+
# return state, video_path
|
145 |
+
|
146 |
+
|
147 |
+
# @spaces.GPU(duration=90)
|
148 |
+
# def extract_glb(
|
149 |
+
# state: dict,
|
150 |
+
# mesh_simplify: float,
|
151 |
+
# texture_size: int,
|
152 |
+
# req: gr.Request,
|
153 |
+
# ) -> Tuple[str, str]:
|
154 |
+
# """
|
155 |
+
# Extract a GLB file from the 3D model.
|
156 |
+
|
157 |
+
# Args:
|
158 |
+
# state (dict): The state of the generated 3D model.
|
159 |
+
# mesh_simplify (float): The mesh simplification factor.
|
160 |
+
# texture_size (int): The texture resolution.
|
161 |
+
|
162 |
+
# Returns:
|
163 |
+
# str: The path to the extracted GLB file.
|
164 |
+
# """
|
165 |
+
# user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
166 |
+
# gs, mesh = unpack_state(state)
|
167 |
+
# glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
168 |
+
# glb_path = os.path.join(user_dir, 'sample.glb')
|
169 |
+
# glb.export(glb_path)
|
170 |
+
# torch.cuda.empty_cache()
|
171 |
+
# return glb_path, glb_path
|
172 |
+
|
173 |
+
|
174 |
+
# @spaces.GPU
|
175 |
+
# def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
176 |
+
# """
|
177 |
+
# Extract a Gaussian file from the 3D model.
|
178 |
+
|
179 |
+
# Args:
|
180 |
+
# state (dict): The state of the generated 3D model.
|
181 |
+
|
182 |
+
# Returns:
|
183 |
+
# str: The path to the extracted Gaussian file.
|
184 |
+
# """
|
185 |
+
# user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
186 |
+
# gs, _ = unpack_state(state)
|
187 |
+
# gaussian_path = os.path.join(user_dir, 'sample.ply')
|
188 |
+
# gs.save_ply(gaussian_path)
|
189 |
+
# torch.cuda.empty_cache()
|
190 |
+
# return gaussian_path, gaussian_path
|
191 |
+
|
192 |
+
|
193 |
+
# def split_image(image: Image.Image) -> List[Image.Image]:
|
194 |
+
# """
|
195 |
+
# Split an image into multiple views.
|
196 |
+
# """
|
197 |
+
# image = np.array(image)
|
198 |
+
# alpha = image[..., 3]
|
199 |
+
# alpha = np.any(alpha>0, axis=0)
|
200 |
+
# start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
201 |
+
# end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
202 |
+
# images = []
|
203 |
+
# for s, e in zip(start_pos, end_pos):
|
204 |
+
# images.append(Image.fromarray(image[:, s:e+1]))
|
205 |
+
# return [preprocess_image(image) for image in images]
|
206 |
|
207 |
|
208 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
|
257 |
demo.unload(end_session)
|
258 |
|
259 |
|
260 |
+
# image_prompt.upload(
|
261 |
+
# preprocess_image,
|
262 |
+
# inputs=[image_prompt],
|
263 |
+
# outputs=[image_prompt],
|
264 |
+
# )
|
265 |
+
|
266 |
+
# generate_btn.click(
|
267 |
+
# get_seed,
|
268 |
+
# inputs=[randomize_seed, seed],
|
269 |
+
# outputs=[seed],
|
270 |
+
# ).then(
|
271 |
+
# image_to_3d,
|
272 |
+
# inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
273 |
+
# outputs=[output_buf, video_output],
|
274 |
+
# ).then(
|
275 |
+
# lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
276 |
+
# outputs=[extract_glb_btn, extract_gs_btn],
|
277 |
+
# )
|
278 |
+
|
279 |
+
# video_output.clear(
|
280 |
+
# lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
281 |
+
# outputs=[extract_glb_btn, extract_gs_btn],
|
282 |
+
# )
|
283 |
+
|
284 |
+
# extract_glb_btn.click(
|
285 |
+
# extract_glb,
|
286 |
+
# inputs=[output_buf, mesh_simplify, texture_size],
|
287 |
+
# outputs=[model_output, download_glb],
|
288 |
+
# ).then(
|
289 |
+
# lambda: gr.Button(interactive=True),
|
290 |
+
# outputs=[download_glb],
|
291 |
+
# )
|
292 |
|
293 |
+
# extract_gs_btn.click(
|
294 |
+
# extract_gaussian,
|
295 |
+
# inputs=[output_buf],
|
296 |
+
# outputs=[model_output, download_gs],
|
297 |
+
# ).then(
|
298 |
+
# lambda: gr.Button(interactive=True),
|
299 |
+
# outputs=[download_gs],
|
300 |
+
# )
|
301 |
+
|
302 |
+
# model_output.clear(
|
303 |
+
# lambda: gr.Button(interactive=False),
|
304 |
+
# outputs=[download_glb],
|
305 |
+
# )
|
306 |
|
307 |
|
308 |
# Launch the Gradio app
|