Spaces:
Runtime error
Runtime error
lionelgarnier
commited on
Commit
·
5428aaf
1
Parent(s):
3114c99
cursor changes
Browse files
app.py
CHANGED
@@ -21,29 +21,49 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
21 |
MAX_IMAGE_SIZE = 2048
|
22 |
|
23 |
def refine_prompt(prompt):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
@spaces.GPU()
|
33 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
examples = [
|
49 |
"a tiny astronaut hatching from an egg on the moon",
|
@@ -60,7 +80,13 @@ css="""
|
|
60 |
|
61 |
with gr.Blocks(css=css) as demo:
|
62 |
|
63 |
-
info = gr.Info("...")
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
with gr.Column(elem_id="col-container"):
|
66 |
gr.Markdown(f"""# Text to Product
|
|
|
21 |
MAX_IMAGE_SIZE = 2048
|
22 |
|
23 |
def refine_prompt(prompt):
|
24 |
+
try:
|
25 |
+
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=2048, device=device)
|
26 |
+
messages = [
|
27 |
+
{"role": "system", "content": "You are a product designer. You will get a basic prompt of product request and you need to imagine a new product design to satisfy that need. Produce an extended description of product front view that will be use by Flux to generate a visual"},
|
28 |
+
{"role": "user", "content": prompt},
|
29 |
+
]
|
30 |
+
refined_prompt = chatbot(messages)
|
31 |
+
return refined_prompt
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error refining prompt: {str(e)}"
|
34 |
+
|
35 |
+
def validate_dimensions(width, height):
|
36 |
+
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
|
37 |
+
return False, "Image dimensions too large"
|
38 |
+
return True, None
|
39 |
|
40 |
@spaces.GPU()
|
41 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
42 |
+
try:
|
43 |
+
progress(0, desc="Starting generation...")
|
44 |
+
|
45 |
+
if randomize_seed:
|
46 |
+
seed = random.randint(0, MAX_SEED)
|
47 |
+
|
48 |
+
progress(0.2, desc="Setting up generator...")
|
49 |
+
generator = torch.Generator().manual_seed(seed)
|
50 |
+
|
51 |
+
progress(0.4, desc="Generating image...")
|
52 |
+
with torch.cuda.amp.autocast():
|
53 |
+
image = pipe(
|
54 |
+
prompt = prompt,
|
55 |
+
width = width,
|
56 |
+
height = height,
|
57 |
+
num_inference_steps = num_inference_steps,
|
58 |
+
generator = generator,
|
59 |
+
guidance_scale=0.0,
|
60 |
+
max_sequence_length=2048
|
61 |
+
).images[0]
|
62 |
+
|
63 |
+
progress(1.0, desc="Done!")
|
64 |
+
return image, seed
|
65 |
+
except Exception as e:
|
66 |
+
return None, f"Error generating image: {str(e)}"
|
67 |
|
68 |
examples = [
|
69 |
"a tiny astronaut hatching from an egg on the moon",
|
|
|
80 |
|
81 |
with gr.Blocks(css=css) as demo:
|
82 |
|
83 |
+
info = gr.Info("Loading models... Please wait.")
|
84 |
+
|
85 |
+
try:
|
86 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
87 |
+
info.value = "Models loaded successfully!"
|
88 |
+
except Exception as e:
|
89 |
+
info.value = f"Error loading models: {str(e)}"
|
90 |
|
91 |
with gr.Column(elem_id="col-container"):
|
92 |
gr.Markdown(f"""# Text to Product
|