Spaces:
Runtime error
Runtime error
lionelgarnier
commited on
Commit
·
640d399
1
Parent(s):
b39baa9
simplify cide
Browse files
app.py
CHANGED
@@ -42,27 +42,25 @@ def get_image_gen_pipeline():
|
|
42 |
def get_text_gen_pipeline():
|
43 |
global _text_gen_pipeline
|
44 |
if _text_gen_pipeline is None:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
print(f"Error loading text generation model: {e}")
|
65 |
-
return None
|
66 |
return _text_gen_pipeline
|
67 |
|
68 |
@spaces.GPU()
|
@@ -127,15 +125,10 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
|
|
127 |
max_sequence_length=512
|
128 |
)
|
129 |
|
130 |
-
# Ensure the image is properly normalized and converted
|
131 |
image = output.images[0]
|
132 |
-
# if isinstance(image, torch.Tensor):
|
133 |
-
# image = (image.clamp(-1, 1) + 1) / 2
|
134 |
-
# image = (image * 255).round().clamp(0, 255).to(torch.uint8).cpu().numpy()
|
135 |
-
# image = Image.fromarray(image)
|
136 |
|
137 |
#torch.cuda.empty_cache()
|
138 |
-
return image, seed
|
139 |
except Exception as e:
|
140 |
print(f"Error in infer: {str(e)}")
|
141 |
return None, f"Error generating image: {str(e)}"
|
@@ -154,150 +147,93 @@ css="""
|
|
154 |
"""
|
155 |
|
156 |
def preload_models():
|
157 |
-
|
|
|
|
|
|
|
|
|
158 |
try:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
163 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
164 |
-
use_fast=True # Ensures a fast tokenizer is used
|
165 |
-
)
|
166 |
-
_text_gen_pipeline = pipeline(
|
167 |
-
"text-generation",
|
168 |
-
model="mistralai/Mistral-7B-Instruct-v0.3",
|
169 |
-
tokenizer=tokenizer, # Pass the fast tokenizer in LGR
|
170 |
-
max_new_tokens=2048,
|
171 |
-
device=device,
|
172 |
-
)
|
173 |
-
|
174 |
-
# Préchargement du modèle de génération d'images
|
175 |
-
dtype = torch.bfloat16
|
176 |
-
_image_gen_pipeline = DiffusionPipeline.from_pretrained(
|
177 |
-
"black-forest-labs/FLUX.1-schnell",
|
178 |
-
# "black-forest-labs/FLUX.1-dev",
|
179 |
-
torch_dtype=dtype
|
180 |
-
).to(device)
|
181 |
-
|
182 |
-
print("Modèles préchargés avec succès!")
|
183 |
-
return True
|
184 |
except Exception as e:
|
185 |
-
print(f"
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
def create_interface():
|
189 |
-
#
|
190 |
if PRELOAD_MODELS:
|
191 |
models_loaded = preload_models()
|
192 |
-
model_status = "✅
|
193 |
else:
|
194 |
-
model_status = "ℹ️
|
195 |
|
196 |
with gr.Blocks(css=css) as demo:
|
197 |
-
|
198 |
|
199 |
with gr.Column(elem_id="col-container"):
|
200 |
-
gr.Markdown(
|
201 |
-
Using Mistral-7B-Instruct-v0.3 + FLUX.1-dev + Trellis
|
202 |
-
""")
|
203 |
|
|
|
204 |
with gr.Row():
|
205 |
-
|
206 |
prompt = gr.Text(
|
207 |
-
label="Prompt",
|
208 |
show_label=False,
|
209 |
max_lines=1,
|
210 |
placeholder="Enter basic object prompt",
|
211 |
container=False,
|
212 |
)
|
213 |
-
|
214 |
-
prompt_button = gr.Button("Refine prompt with Mistral", scale=0)
|
215 |
|
216 |
refined_prompt = gr.Text(
|
217 |
-
label="Refined Prompt",
|
218 |
show_label=False,
|
219 |
max_lines=10,
|
220 |
placeholder="Detailed object prompt",
|
221 |
container=False,
|
222 |
max_length=2048,
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
run_button = gr.Button("Create visual with Flux", scale=0)
|
227 |
-
|
228 |
-
generated_image = gr.Image(label="Generated Image", show_label=False)
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
interactive=True,
|
238 |
-
info="Higher values produce more diverse outputs",
|
239 |
-
),
|
240 |
-
gr.Slider(
|
241 |
-
label="Max new tokens",
|
242 |
-
value=256,
|
243 |
-
minimum=0,
|
244 |
-
maximum=1048,
|
245 |
-
step=64,
|
246 |
-
interactive=True,
|
247 |
-
info="The maximum numbers of new tokens",
|
248 |
-
),
|
249 |
-
gr.Slider(
|
250 |
-
label="Top-p (nucleus sampling)",
|
251 |
-
value=0.90,
|
252 |
-
minimum=0.0,
|
253 |
-
maximum=1,
|
254 |
-
step=0.05,
|
255 |
-
interactive=True,
|
256 |
-
info="Higher values sample more low-probability tokens",
|
257 |
-
),
|
258 |
-
gr.Slider(
|
259 |
-
label="Repetition penalty",
|
260 |
-
value=1.2,
|
261 |
-
minimum=1.0,
|
262 |
-
maximum=2.0,
|
263 |
-
step=0.05,
|
264 |
-
interactive=True,
|
265 |
-
info="Penalize repeated tokens",
|
266 |
-
)
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
with gr.Row():
|
281 |
-
|
282 |
-
width = gr.Slider(
|
283 |
-
label="Width",
|
284 |
-
minimum=256,
|
285 |
-
maximum=MAX_IMAGE_SIZE,
|
286 |
-
step=32,
|
287 |
-
value=512,
|
288 |
)
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
with gr.Row():
|
299 |
|
300 |
-
|
301 |
num_inference_steps = gr.Slider(
|
302 |
label="Number of inference steps",
|
303 |
minimum=1,
|
@@ -305,29 +241,29 @@ def create_interface():
|
|
305 |
step=1,
|
306 |
value=10,
|
307 |
)
|
308 |
-
|
|
|
309 |
gr.Examples(
|
310 |
examples=examples,
|
311 |
fn=refine_prompt,
|
312 |
-
inputs
|
313 |
-
outputs
|
314 |
cache_examples=True,
|
315 |
-
cache_mode='lazy'
|
316 |
)
|
317 |
|
318 |
-
|
319 |
gr.on(
|
320 |
triggers=[prompt_button.click, prompt.submit],
|
321 |
-
fn
|
322 |
-
inputs
|
323 |
-
outputs
|
324 |
)
|
325 |
|
326 |
gr.on(
|
327 |
-
triggers=[
|
328 |
-
fn
|
329 |
-
inputs
|
330 |
-
outputs
|
331 |
)
|
332 |
|
333 |
return demo
|
|
|
42 |
def get_text_gen_pipeline():
|
43 |
global _text_gen_pipeline
|
44 |
if _text_gen_pipeline is None:
|
45 |
+
try:
|
46 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
48 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
49 |
+
use_fast=True
|
50 |
+
)
|
51 |
+
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
52 |
+
|
53 |
+
_text_gen_pipeline = pipeline(
|
54 |
+
"text-generation",
|
55 |
+
model="mistralai/Mistral-7B-Instruct-v0.3",
|
56 |
+
tokenizer=tokenizer,
|
57 |
+
max_new_tokens=2048,
|
58 |
+
device=device,
|
59 |
+
pad_token_id=tokenizer.pad_token_id
|
60 |
+
)
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error loading text generation model: {e}")
|
63 |
+
return None
|
|
|
|
|
64 |
return _text_gen_pipeline
|
65 |
|
66 |
@spaces.GPU()
|
|
|
125 |
max_sequence_length=512
|
126 |
)
|
127 |
|
|
|
128 |
image = output.images[0]
|
|
|
|
|
|
|
|
|
129 |
|
130 |
#torch.cuda.empty_cache()
|
131 |
+
return image, f"Image generated successfully with seed {seed}"
|
132 |
except Exception as e:
|
133 |
print(f"Error in infer: {str(e)}")
|
134 |
return None, f"Error generating image: {str(e)}"
|
|
|
147 |
"""
|
148 |
|
149 |
def preload_models():
|
150 |
+
global _text_gen_pipeline, _image_gen_pipeline
|
151 |
+
|
152 |
+
print("Preloading models...")
|
153 |
+
success = True
|
154 |
+
|
155 |
try:
|
156 |
+
_text_gen_pipeline = get_text_gen_pipeline()
|
157 |
+
if _text_gen_pipeline is None:
|
158 |
+
success = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
except Exception as e:
|
160 |
+
print(f"Error preloading text generation model: {str(e)}")
|
161 |
+
success = False
|
162 |
+
|
163 |
+
try:
|
164 |
+
_image_gen_pipeline = get_image_gen_pipeline()
|
165 |
+
if _image_gen_pipeline is None:
|
166 |
+
success = False
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Error preloading image generation model: {str(e)}")
|
169 |
+
success = False
|
170 |
+
|
171 |
+
status = "Models preloaded successfully!" if success else "Error preloading models"
|
172 |
+
print(status)
|
173 |
+
return success
|
174 |
|
175 |
def create_interface():
|
176 |
+
# Preload models if needed
|
177 |
if PRELOAD_MODELS:
|
178 |
models_loaded = preload_models()
|
179 |
+
model_status = "✅ Models loaded successfully!" if models_loaded else "⚠️ Error loading models"
|
180 |
else:
|
181 |
+
model_status = "ℹ️ Models will be loaded on demand"
|
182 |
|
183 |
with gr.Blocks(css=css) as demo:
|
184 |
+
gr.Info(model_status)
|
185 |
|
186 |
with gr.Column(elem_id="col-container"):
|
187 |
+
gr.Markdown("# Text to Product\nUsing Mistral-7B-Instruct-v0.3 + FLUX.1-dev + Trellis")
|
|
|
|
|
188 |
|
189 |
+
# Basic inputs
|
190 |
with gr.Row():
|
|
|
191 |
prompt = gr.Text(
|
|
|
192 |
show_label=False,
|
193 |
max_lines=1,
|
194 |
placeholder="Enter basic object prompt",
|
195 |
container=False,
|
196 |
)
|
197 |
+
prompt_button = gr.Button("Refine prompt with Mistral")
|
|
|
198 |
|
199 |
refined_prompt = gr.Text(
|
|
|
200 |
show_label=False,
|
201 |
max_lines=10,
|
202 |
placeholder="Detailed object prompt",
|
203 |
container=False,
|
204 |
max_length=2048,
|
205 |
+
)
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
+
visual_button = gr.Button("Create visual with Flux")
|
208 |
+
generated_image = gr.Image(show_label=False)
|
209 |
+
error_box = gr.Textbox(
|
210 |
+
label="Status Messages",
|
211 |
+
interactive=False,
|
212 |
+
placeholder="Status messages will appear here",
|
213 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
+
# Accordion sections for advanced settings
|
216 |
+
with gr.Accordion("Advanced Settings", open=False):
|
217 |
+
with gr.Tab("Mistral"):
|
218 |
+
# Mistral settings
|
219 |
+
temperature = gr.Slider(
|
220 |
+
label="Temperature",
|
221 |
+
value=0.9,
|
222 |
+
minimum=0.0,
|
223 |
+
maximum=1.0,
|
224 |
+
step=0.05,
|
225 |
+
info="Higher values produce more diverse outputs",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
)
|
227 |
|
228 |
+
with gr.Tab("Flux"):
|
229 |
+
# Flux settings
|
230 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
231 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
232 |
+
|
233 |
+
with gr.Row():
|
234 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
235 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
|
|
236 |
|
|
|
237 |
num_inference_steps = gr.Slider(
|
238 |
label="Number of inference steps",
|
239 |
minimum=1,
|
|
|
241 |
step=1,
|
242 |
value=10,
|
243 |
)
|
244 |
+
|
245 |
+
# Examples section
|
246 |
gr.Examples(
|
247 |
examples=examples,
|
248 |
fn=refine_prompt,
|
249 |
+
inputs=[prompt],
|
250 |
+
outputs=[refined_prompt],
|
251 |
cache_examples=True,
|
|
|
252 |
)
|
253 |
|
254 |
+
# Event handlers
|
255 |
gr.on(
|
256 |
triggers=[prompt_button.click, prompt.submit],
|
257 |
+
fn=refine_prompt,
|
258 |
+
inputs=[prompt],
|
259 |
+
outputs=[refined_prompt]
|
260 |
)
|
261 |
|
262 |
gr.on(
|
263 |
+
triggers=[visual_button.click],
|
264 |
+
fn=infer,
|
265 |
+
inputs=[refined_prompt, seed, randomize_seed, width, height, num_inference_steps],
|
266 |
+
outputs=[generated_image, error_box]
|
267 |
)
|
268 |
|
269 |
return demo
|