lionelgarnier commited on
Commit
ac3fb1c
·
1 Parent(s): 234c60d

remove progress

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -93,20 +93,20 @@ def validate_dimensions(width, height):
93
  return True, None
94
 
95
  @spaces.GPU()
96
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
97
  try:
98
- progress(0, desc="Starting generation...")
99
 
100
  # Validate that prompt is not empty
101
  if not prompt or prompt.strip() == "":
102
  return None, "Please provide a valid prompt."
103
 
104
- progress(0.1, desc="Loading image generation model...")
105
  pipe = get_image_gen_pipeline()
106
  if pipe is None:
107
  return None, "Image generation model is unavailable."
108
 
109
- progress(0.2, desc="Validating dimensions...")
110
  is_valid, error_msg = validate_dimensions(width, height)
111
  if not is_valid:
112
  return None, error_msg
@@ -114,10 +114,10 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
114
  if randomize_seed:
115
  seed = random.randint(0, MAX_SEED)
116
 
117
- progress(0.3, desc="Setting up generator...")
118
  generator = torch.Generator("cuda").manual_seed(seed) # Explicitly use CUDA generator
119
 
120
- progress(0.4, desc="Generating image...")
121
  with torch.autocast('cuda'):
122
  image = pipe(
123
  prompt=prompt,
@@ -125,12 +125,12 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
125
  height=height,
126
  num_inference_steps=num_inference_steps,
127
  generator=generator,
128
- guidance_scale=7.5, # Increased guidance scale
129
- max_sequence_length=512
130
  ).images[0]
131
 
132
  torch.cuda.empty_cache() # Clean up GPU memory after generation
133
- progress(1.0, desc="Done!")
134
  return image, seed
135
  except Exception as e:
136
  print(f"Error in infer: {str(e)}") # Add detailed error logging
 
93
  return True, None
94
 
95
  @spaces.GPU()
96
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4): # , progress=gr.Progress(track_tqdm=True)
97
  try:
98
+ # progress(0, desc="Starting generation...")
99
 
100
  # Validate that prompt is not empty
101
  if not prompt or prompt.strip() == "":
102
  return None, "Please provide a valid prompt."
103
 
104
+ # progress(0.1, desc="Loading image generation model...")
105
  pipe = get_image_gen_pipeline()
106
  if pipe is None:
107
  return None, "Image generation model is unavailable."
108
 
109
+ # progress(0.2, desc="Validating dimensions...")
110
  is_valid, error_msg = validate_dimensions(width, height)
111
  if not is_valid:
112
  return None, error_msg
 
114
  if randomize_seed:
115
  seed = random.randint(0, MAX_SEED)
116
 
117
+ # progress(0.3, desc="Setting up generator...")
118
  generator = torch.Generator("cuda").manual_seed(seed) # Explicitly use CUDA generator
119
 
120
+ # progress(0.4, desc="Generating image...")
121
  with torch.autocast('cuda'):
122
  image = pipe(
123
  prompt=prompt,
 
125
  height=height,
126
  num_inference_steps=num_inference_steps,
127
  generator=generator,
128
+ guidance_scale=0.0, # Increased guidance scale
129
+ # max_sequence_length=512
130
  ).images[0]
131
 
132
  torch.cuda.empty_cache() # Clean up GPU memory after generation
133
+ # progress(1.0, desc="Done!")
134
  return image, seed
135
  except Exception as e:
136
  print(f"Error in infer: {str(e)}") # Add detailed error logging