import gradio as gr import numpy as np import random import os import spaces import torch from diffusers import DiffusionPipeline from transformers import pipeline from huggingface_hub import login hf_token = os.getenv("hf_token") login(token=hf_token) dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 try: text_gen_pipeline = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=2048, device=device) except Exception as e: text_gen_pipeline = None print(f"Error loading text generation model: {e}") def refine_prompt(prompt): if text_gen_pipeline is None: return "Text generation model is unavailable." try: messages = [ {"role": "system", "content": "You are a product designer. You will get a basic prompt of product request and you need to imagine a new product design to satisfy that need. Produce an extended description of product front view that will be used by Flux to generate a visual"}, {"role": "user", "content": prompt}, ] refined_prompt = text_gen_pipeline(messages) return refined_prompt except Exception as e: return f"Error refining prompt: {str(e)}" def validate_dimensions(width, height): if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE: return False, "Image dimensions too large" return True, None @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): try: progress(0, desc="Starting generation...") # Validate that prompt is not empty if not prompt or prompt.strip() == "": return None, "Please provide a valid prompt." # Validate width/height dimensions is_valid, error_msg = validate_dimensions(width, height) if not is_valid: return None, error_msg if randomize_seed: seed = random.randint(0, MAX_SEED) progress(0.2, desc="Setting up generator...") generator = torch.Generator().manual_seed(seed) progress(0.4, desc="Generating image...") with torch.cuda.amp.autocast(): image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=0.0, max_sequence_length=2048 ).images[0] torch.cuda.empty_cache() # Clean up GPU memory after generation progress(1.0, desc="Done!") return image, seed except Exception as e: return None, f"Error generating image: {str(e)}" examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: # Compute the model loading status message ahead of creating the Info component. model_status = "Models loaded successfully!" info = gr.Info(model_status) with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Text to Product Using Mistral + Flux + Trellis """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) prompt_button = gr.Button("Refine prompt", scale=0) refined_prompt = gr.Text( label="Refined Prompt", show_label=False, max_lines=10, placeholder="Prompt refined by Mistral", container=False, max_length=2048, ) run_button = gr.Button("Create visual", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings Mistral", open=False): gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) with gr.Accordion("Advanced Settings Flux", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[prompt_button.click, prompt.submit], fn = refine_prompt, inputs = [prompt], outputs = [refined_prompt] ) gr.on( triggers=[run_button.click], fn = infer, inputs = [refined_prompt, seed, randomize_seed, width, height, num_inference_steps], outputs = [result, seed] ) demo.launch()