FinalTest / app.py
yoshizen's picture
Update app.py
737fe0e verified
raw
history blame
21.1 kB
import re
import requests
import pandas as pd
import torch
import gradio as gr
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from llama_index.core import Settings
from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgent
from llama_index.llms.huggingface import HuggingFaceLLM
from typing import List, Dict, Any, Tuple, Optional
import json
import ast
import numpy as np
from PIL import Image, UnidentifiedImageError
import io
import base64
import logging
import time
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("GAIA-Mastermind")
# Конфигурация
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MODEL_NAME = "google/flan-t5-xxl"
API_RETRIES = 3
API_TIMEOUT = 45
# === ИСПРАВЛЕННОЕ ЯДРО СИСТЕМЫ ===
class GAIAThoughtProcessor:
def __init__(self):
# Оптимизированная загрузка модели
self.llm = HuggingFaceLLM(
model_name=MODEL_NAME,
tokenizer_name=MODEL_NAME,
context_window=2048,
max_new_tokens=512,
device_map="auto",
model_kwargs={
"torch_dtype": torch.float16,
"load_in_4bit": True,
"device_map": "auto"
},
generate_kwargs={"temperature": 0.01, "do_sample": False}
)
self.tools = self._create_gaia_tools()
self.agent = ReActAgent.from_tools(
self.tools,
llm=self.llm,
verbose=True,
max_iterations=10,
react_mode="plan_and_solve"
)
logger.info("⚙️ Инициализирован GAIAThoughtProcessor с %d инструментами", len(self.tools))
def _create_gaia_tools(self) -> List[FunctionTool]:
"""Создает инструменты, соответствующие спецификации GAIA"""
return [
FunctionTool.from_defaults(
fn=self._math_solver,
name="math_solver",
description="Вычисляет математические выражения. Ввод: строка с выражением (например, '2+2*3')"
),
FunctionTool.from_defaults(
fn=self._table_analyzer,
name="table_analyzer",
description="Анализирует табличные данные. Ввод: (table_data:str, query:str)"
),
FunctionTool.from_defaults(
fn=self._text_processor,
name="text_processor",
description="Операции с текстом: reverse, count_words, extract_numbers. Ввод: (text:str, operation:str)"
),
FunctionTool.from_defaults(
fn=self._image_processor,
name="image_processor",
description="Анализирует изображения. Ввод: base64 изображения или URL"
)
]
def _math_solver(self, expression: str) -> str:
"""Безопасное вычисление математических выражений"""
try:
# Очистка выражения
clean_expr = re.sub(r"[^0-9+\-*/().^√π]", "", expression)
# Поддержка математических констант и функций
context = {
"sqrt": np.sqrt,
"log": np.log,
"log10": np.log10,
"pi": np.pi,
"e": np.e,
"sin": np.sin,
"cos": np.cos,
"tan": np.tan
}
return str(eval(clean_expr, {"__builtins__": None}, context))
except Exception as e:
logger.error("Math error: %s", e)
return f"Math Error: {str(e)}"
def _table_analyzer(self, table_data: str, query: str) -> str:
"""Анализ табличных данных с поддержкой сложных запросов"""
try:
# Определение формата таблицы
if "\t" in table_data:
df = pd.read_csv(io.StringIO(table_data), sep="\t")
elif "," in table_data:
df = pd.read_csv(io.StringIO(table_data))
else:
df = pd.read_fwf(io.StringIO(table_data))
# Выполнение pandas-запроса
if "sum" in query.lower():
return str(df.sum(numeric_only=True).to_dict())
elif "mean" in query.lower():
return str(df.mean(numeric_only=True).to_dict())
elif "max" in query.lower():
return str(df.max(numeric_only=True).to_dict())
elif "min" in query.lower():
return str(df.min(numeric_only=True).to_dict())
elif "count" in query.lower():
return str(df.count().to_dict())
else:
# Обработка пользовательских запросов
try:
result = df.query(query)
return result.to_string()
except:
return df.describe().to_string()
except Exception as e:
logger.error("Table error: %s", e)
return f"Table Error: {str(e)}"
def _text_processor(self, text: str, operation: str) -> str:
"""Операции с текстом с поддержкой GAIA спецификации"""
operation = operation.lower()
if operation == "reverse":
return text[::-1]
elif operation == "count_words":
return str(len(text.split()))
elif operation == "extract_numbers":
return ", ".join(re.findall(r"[-+]?\d*\.\d+|\d+", text))
elif operation == "uppercase":
return text.upper()
elif operation == "lowercase":
return text.lower()
else:
return f"Unsupported operation: {operation}"
def _image_processor(self, image_input: str) -> str:
"""Обработка изображений с поддержкой URL и base64"""
try:
# Обработка URL
if image_input.startswith("http"):
response = requests.get(image_input, timeout=30)
response.raise_for_status()
img_data = response.content
img = Image.open(io.BytesIO(img_data))
# Обработка base64
elif image_input.startswith("data:image"):
header, data = image_input.split(",", 1)
img_data = base64.b64decode(data)
img = Image.open(io.BytesIO(img_data))
else:
return "Invalid image format"
# Анализ изображения
description = (
f"Format: {img.format}, Size: {img.size}, "
f"Mode: {img.mode}, Colors: {len(set(img.getdata()))}"
)
return description
except (UnidentifiedImageError, requests.exceptions.RequestException) as e:
logger.error("Image processing error: %s", e)
return f"Image Error: {str(e)}"
except Exception as e:
logger.exception("Unexpected image error")
return f"Unexpected Error: {str(e)}"
def process_question(self, question: str, task_id: str) -> str:
"""Обработка вопроса с учетом спецификации GAIA"""
try:
# Декомпозиция задачи
decomposition_prompt = (
f"Декомпозируй задачу GAIA ({task_id}) на шаги:\n{question}\n\n"
"Шаги (разделены точкой с запятой):"
)
steps_response = self.llm.complete(decomposition_prompt)
steps = [s.strip() for s in steps_response.text.split(";") if s.strip()]
# Выполнение шагов
results = []
for step in steps:
if step:
try:
result = self.agent.chat(step)
results.append(f"{step}: {result}")
except Exception as e:
results.append(f"{step}: ERROR - {str(e)}")
# Синтез финального ответа
synthesis_prompt = (
f"Задача GAIA {task_id}:\n{question}\n\n"
"Выполненные шаги:\n" + "\n".join(results) +
"\n\nФинальный ответ в формате JSON:"
)
final_response = self.llm.complete(synthesis_prompt)
# Извлечение чистого ответа
answer_match = re.search(r'\{.*\}', final_response.text, re.DOTALL)
if answer_match:
return answer_match.group(0)
else:
return json.dumps({
"final_answer": final_response.text.strip(),
"task_id": task_id,
"reasoning_steps": results
})
except Exception as e:
logger.exception("Processing failed")
return json.dumps({
"task_id": task_id,
"error": str(e),
"final_answer": f"SYSTEM ERROR: {str(e)}"
})
# === ИСПРАВЛЕННАЯ СИСТЕМА ОЦЕНКИ ===
class GAIAEvaluationRunner:
def __init__(self, api_url: str = DEFAULT_API_URL):
self.api_url = api_url
self.questions_url = f"{api_url}/questions"
self.submit_url = f"{api_url}/submit"
self.session = requests.Session()
self.session.headers.update({
"Accept": "application/json",
"User-Agent": "GAIA-Mastermind/1.0",
"Content-Type": "application/json"
})
logger.info("🌐 Инициализирован GAIAEvaluationRunner для %s", api_url)
def run_evaluation(self, agent, username: str, agent_code: str, progress=tqdm):
# Получение вопросов
questions, status = self._fetch_questions()
if status != "success":
return status, 0, 0, pd.DataFrame()
# Обработка вопросов
results = []
answers = []
for i, q in enumerate(progress(questions, desc="🧠 Processing GAIA")):
try:
# GAIA-specific: task_id обязателен
task_id = q.get("task_id", f"unknown_{i}")
# Обработка вопроса
json_response = agent.process_question(q["question"], task_id)
# Парсинг и валидация ответа
try:
response_obj = json.loads(json_response)
final_answer = response_obj.get("final_answer", "")
# GAIA-требование: ответ должен быть строкой
if not isinstance(final_answer, str):
final_answer = str(final_answer)
except json.JSONDecodeError:
final_answer = json_response
# Формирование ответа согласно GAIA API
answers.append({
"task_id": task_id,
"answer": final_answer[:500] # GAIA limitation
})
# Запись результатов
results.append({
"Task ID": task_id,
"Question": q["question"][:150] + "..." if len(q["question"]) > 150 else q["question"],
"Answer": final_answer[:200],
"Status": "Processed"
})
except Exception as e:
logger.error("Task %s failed: %s", task_id, e)
answers.append({
"task_id": task_id,
"answer": f"ERROR: {str(e)}"
})
results.append({
"Task ID": task_id,
"Question": "Error",
"Answer": f"ERROR: {str(e)}",
"Status": "Failed"
})
# Отправка ответов
submission_result, score = self._submit_answers(username, agent_code, answers)
return submission_result, score, len(questions), pd.DataFrame(results)
def _fetch_questions(self) -> Tuple[list, str]:
"""Получение вопросов с обработкой GAIA спецификации"""
for _ in range(API_RETRIES):
try:
response = self.session.get(
self.questions_url,
timeout=API_TIMEOUT
)
# Обработка GAIA статусов
if response.status_code == 200:
questions = response.json()
if not isinstance(questions, list):
return [], "Invalid response format: expected list"
# Обогащение данных для мультимодальных задач
for q in questions:
q.setdefault("task_id", f"id_{hash(q['question']) % 100000}")
if "image" in q:
q["question"] = f"[IMAGE] {q['question']}"
return questions, "success"
elif response.status_code == 429:
logger.warning("Rate limited, retrying...")
time.sleep(5)
continue
elif response.status_code == 404:
return [], "API endpoint not found"
else:
return [], f"API error: HTTP {response.status_code}"
except Exception as e:
logger.error("Fetch error: %s", e)
return [], f"Connection error: {str(e)}"
return [], "API unavailable after retries"
def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
"""Отправка ответов согласно GAIA API спецификации"""
payload = {
"username": username.strip(),
"agent_code": agent_code.strip(),
"answers": answers
}
for attempt in range(API_RETRIES):
try:
response = self.session.post(
self.submit_url,
json=payload,
timeout=API_TIMEOUT * 2
)
# Обработка GAIA статусов
if response.status_code == 200:
result = response.json()
score = result.get("score", 0)
return result.get("message", "Answers submitted"), score
elif response.status_code == 400:
error = response.json().get("error", "Invalid request")
logger.error("Validation error: %s", error)
return f"Validation Error: {error}", 0
elif response.status_code == 429:
logger.warning("Rate limited, retrying...")
time.sleep(10)
continue
else:
return f"HTTP Error {response.status_code}", 0
except Exception as e:
logger.error("Submit error: %s", e)
return f"Connection Error: {str(e)}", 0
return "Submission failed after retries", 0
# === ОПТИМИЗИРОВАННЫЙ ИНТЕРФЕЙС ===
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
progress(0, desc="⚡ Инициализация GAIA Mastermind...")
try:
agent = GAIAThoughtProcessor()
except Exception as e:
logger.exception("Agent initialization failed")
return f"Agent Error: {str(e)}", 0, 0, pd.DataFrame()
progress(0.1, desc="🌐 Подключение к GAIA API...")
runner = GAIAEvaluationRunner()
# Обертка tqdm для Gradio
class ProgressWrapper:
def __init__(self, total, progress):
self.total = total
self.progress = progress
self.current = 0
def update(self, n=1):
self.current += n
self.progress(self.current / self.total, desc=f"🧠 Обработка задач ({self.current}/{self.total})")
def __iter__(self):
return self
def __next__(self):
if self.current >= self.total:
raise StopIteration
return self.current
return runner.run_evaluation(
agent,
username,
agent_code,
progress=ProgressWrapper
)
# === ИНТЕЛЛЕКТУАЛЬНЫЙ ИНТЕРФЕЙС ===
with gr.Blocks(
title="🧠 GAIA Mastermind",
theme=gr.themes.Soft(),
css="""
.gradio-container {background: linear-gradient(135deg, #1a2a6c, #2c5364)}
.dark {color: #f0f0f0}
"""
) as demo:
gr.Markdown("""
<div style="text-align:center; background: linear-gradient(135deg, #0f2027, #203a43);
padding: 20px; border-radius: 15px; color: white; box-shadow: 0 10px 20px rgba(0,0,0,0.3);">
<h1>🧠 GAIA Mastermind</h1>
<h3>Многошаговое решение задач с Tree-of-Thought</h3>
<p>Соответствует спецификации GAIA API v1.2</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 🔐 Авторизация")
username = gr.Textbox(
label="HF Username",
value="yoshizen",
info="Ваше имя пользователя Hugging Face"
)
agent_code = gr.Textbox(
label="Agent Code",
value="https://huggingface.co/spaces/yoshizen/FinalTest",
info="URL вашего агента"
)
run_btn = gr.Button("🚀 Запустить оценку", variant="primary", scale=1)
gr.Markdown("### ⚙️ Статус системы")
sys_info = gr.Textbox(label="Системная информация", interactive=False)
with gr.Column(scale=2):
gr.Markdown("### 📊 Результаты GAIA")
with gr.Row():
result_output = gr.Textbox(
label="Статус отправки",
interactive=False,
max_lines=3
)
correct_output = gr.Number(
label="✅ Правильные ответы",
interactive=False
)
total_output = gr.Number(
label="📚 Всего вопросов",
interactive=False
)
with gr.Row():
results_table = gr.Dataframe(
label="🔍 Детализация ответов",
headers=["Task ID", "Question", "Answer", "Status"],
interactive=False,
wrap=True,
overflow_row_behaviour="paginate",
height=400,
column_widths=["15%", "35%", "40%", "10%"]
)
# Системная информация
def get_system_info():
return (
f"Device: {'GPU ✅' if torch.cuda.is_available() else 'CPU ⚠️'}, "
f"Model: {MODEL_NAME}, "
f"API: {DEFAULT_API_URL}"
)
demo.load(get_system_info, inputs=None, outputs=sys_info)
run_btn.click(
fn=run_evaluation,
inputs=[username, agent_code],
outputs=[result_output, correct_output, total_output, results_table],
concurrency_limit=1,
show_progress="minimal",
api_name="run_evaluation"
)
if __name__ == "__main__":
demo.queue(
max_size=5,
api_open=False
).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
debug=False
)