Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ logger = logging.getLogger("GAIA-Mastermind")
|
|
22 |
|
23 |
# Конфигурация
|
24 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
25 |
-
MODEL_NAME = "google/flan-t5-
|
26 |
API_RETRIES = 3
|
27 |
API_TIMEOUT = 45
|
28 |
|
@@ -32,25 +32,29 @@ class GAIAThoughtProcessor:
|
|
32 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
logger.info(f"⚡ Инициализация GAIAThoughtProcessor на {self.device.upper()}")
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def _math_solver(self, expression: str) -> str:
|
56 |
"""Безопасное вычисление математических выражений"""
|
@@ -138,7 +142,7 @@ class GAIAThoughtProcessor:
|
|
138 |
# Базовый анализ изображения
|
139 |
description = (
|
140 |
f"Format: {img.format}, Size: {img.size}, "
|
141 |
-
f"Mode: {img.mode}
|
142 |
)
|
143 |
return description
|
144 |
except (UnidentifiedImageError, requests.exceptions.RequestException) as e:
|
@@ -189,53 +193,15 @@ class GAIAThoughtProcessor:
|
|
189 |
def process_question(self, question: str, task_id: str) -> str:
|
190 |
"""Обработка вопроса с декомпозицией на шаги"""
|
191 |
try:
|
192 |
-
#
|
193 |
-
|
194 |
-
|
195 |
-
f"Используй инструменты: math_solver, table_analyzer, text_processor, image_processor.\n\n"
|
196 |
-
f"Задача: {question}\n\n"
|
197 |
-
"Шаги (формат: [tool_name] arguments):"
|
198 |
-
)
|
199 |
-
|
200 |
-
steps_response = self._generate_response(decomposition_prompt)
|
201 |
-
steps = [s.strip() for s in steps_response.split("\n") if s.strip()]
|
202 |
-
|
203 |
-
# Шаг 2: Выполнение шагов
|
204 |
-
results = []
|
205 |
-
for step in steps:
|
206 |
-
if step:
|
207 |
-
try:
|
208 |
-
# Извлечение инструмента и аргументов
|
209 |
-
match = re.match(r"\[(\w+)\]\s*(.+)", step)
|
210 |
-
if match:
|
211 |
-
tool_name = match.group(1)
|
212 |
-
arguments = match.group(2)
|
213 |
-
result = self._call_tool(tool_name, arguments)
|
214 |
-
results.append(f"{step} -> {result}")
|
215 |
-
else:
|
216 |
-
results.append(f"{step} -> ERROR: Invalid format")
|
217 |
-
except Exception as e:
|
218 |
-
results.append(f"{step} -> ERROR: {str(e)}")
|
219 |
-
|
220 |
-
# Шаг 3: Синтез финального ответа
|
221 |
-
synthesis_prompt = (
|
222 |
-
f"Задача GAIA {task_id}:\n{question}\n\n"
|
223 |
-
"Выполненные шаги:\n" + "\n".join(results) +
|
224 |
-
"\n\nФинальный ответ в формате JSON (только п��ле final_answer):"
|
225 |
-
)
|
226 |
-
|
227 |
-
final_response = self._generate_response(synthesis_prompt)
|
228 |
|
229 |
# Извлечение чистого ответа
|
230 |
-
if "final_answer" in
|
231 |
-
return json.dumps({"final_answer":
|
232 |
else:
|
233 |
-
|
234 |
-
answer_match = re.search(r'\{.*\}', final_response, re.DOTALL)
|
235 |
-
if answer_match:
|
236 |
-
return answer_match.group(0)
|
237 |
-
else:
|
238 |
-
return json.dumps({"final_answer": final_response.strip()})
|
239 |
except Exception as e:
|
240 |
logger.exception("Processing failed")
|
241 |
return json.dumps({
|
@@ -262,7 +228,14 @@ class GAIAEvaluationRunner:
|
|
262 |
# Получение вопросов
|
263 |
questions, status = self._fetch_questions()
|
264 |
if status != "success":
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
# Обработка вопросов
|
268 |
results = []
|
@@ -290,8 +263,8 @@ class GAIAEvaluationRunner:
|
|
290 |
# Запись результатов
|
291 |
results.append({
|
292 |
"Task ID": task_id,
|
293 |
-
"Question": q["question"][:
|
294 |
-
"Answer": final_answer[:
|
295 |
"Status": "Processed"
|
296 |
})
|
297 |
except Exception as e:
|
@@ -308,12 +281,22 @@ class GAIAEvaluationRunner:
|
|
308 |
})
|
309 |
|
310 |
# Отправка ответов
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
def _fetch_questions(self) -> Tuple[list, str]:
|
315 |
"""Получение вопросов с API"""
|
316 |
-
for
|
317 |
try:
|
318 |
response = self.session.get(
|
319 |
self.questions_url,
|
@@ -323,7 +306,7 @@ class GAIAEvaluationRunner:
|
|
323 |
if response.status_code == 200:
|
324 |
questions = response.json()
|
325 |
if not isinstance(questions, list):
|
326 |
-
return [], "
|
327 |
|
328 |
# Добавление task_id если отсутствует
|
329 |
for q in questions:
|
@@ -331,18 +314,22 @@ class GAIAEvaluationRunner:
|
|
331 |
return questions, "success"
|
332 |
|
333 |
elif response.status_code == 429:
|
334 |
-
|
335 |
-
|
|
|
336 |
continue
|
337 |
|
338 |
else:
|
339 |
-
return [], f"API
|
340 |
|
|
|
|
|
|
|
341 |
except Exception as e:
|
342 |
-
logger.error(f"
|
343 |
-
return [], f"
|
344 |
|
345 |
-
return [], "API
|
346 |
|
347 |
def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
|
348 |
"""Отправка ответов на сервер"""
|
@@ -363,89 +350,120 @@ class GAIAEvaluationRunner:
|
|
363 |
if response.status_code == 200:
|
364 |
result = response.json()
|
365 |
score = result.get("score", 0)
|
366 |
-
return result.get("message", "
|
367 |
|
368 |
elif response.status_code == 400:
|
369 |
-
error = response.json().get("error", "
|
370 |
-
logger.error(f"
|
371 |
-
return f"
|
372 |
|
373 |
elif response.status_code == 429:
|
374 |
-
|
375 |
-
|
|
|
376 |
continue
|
377 |
|
378 |
else:
|
379 |
-
return f"HTTP
|
380 |
|
|
|
|
|
|
|
381 |
except Exception as e:
|
382 |
-
logger.error(f"
|
383 |
-
return f"
|
384 |
|
385 |
-
return "
|
386 |
|
387 |
# === ИНТЕРФЕЙС GRADIO ===
|
388 |
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
|
389 |
-
progress(0, desc="⚡ Инициализация GAIA Mastermind...")
|
390 |
try:
|
|
|
391 |
agent = GAIAThoughtProcessor()
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
results = []
|
406 |
-
answers = []
|
407 |
-
total = len(questions)
|
408 |
-
|
409 |
-
for i, q in enumerate(questions):
|
410 |
-
progress(i / total, desc=f"🧠 Обработка задач ({i+1}/{total})")
|
411 |
-
try:
|
412 |
-
task_id = q.get("task_id", f"unknown_{i}")
|
413 |
-
json_response = agent.process_question(q["question"], task_id)
|
414 |
-
|
415 |
-
# Парсинг ответа
|
416 |
-
try:
|
417 |
-
response_obj = json.loads(json_response)
|
418 |
-
final_answer = response_obj.get("final_answer", "")
|
419 |
-
except:
|
420 |
-
final_answer = json_response
|
421 |
-
|
422 |
-
answers.append({
|
423 |
-
"task_id": task_id,
|
424 |
-
"answer": str(final_answer)[:500]
|
425 |
-
})
|
426 |
-
|
427 |
-
results.append({
|
428 |
-
"Task ID": task_id,
|
429 |
-
"Question": q["question"][:150] + "..." if len(q["question"]) > 150 else q["question"],
|
430 |
-
"Answer": str(final_answer)[:200],
|
431 |
-
"Status": "Processed"
|
432 |
-
})
|
433 |
-
except Exception as e:
|
434 |
-
logger.error(f"Task {task_id} failed: {e}")
|
435 |
-
answers.append({
|
436 |
-
"task_id": task_id,
|
437 |
-
"answer": f"ERROR: {str(e)}"
|
438 |
-
})
|
439 |
-
results.append({
|
440 |
-
"Task ID": task_id,
|
441 |
-
"Question": "Error",
|
442 |
-
"Answer": f"ERROR: {str(e)}",
|
443 |
"Status": "Failed"
|
444 |
-
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
-
|
447 |
-
|
448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
# Создание интерфейса
|
451 |
with gr.Blocks(
|
@@ -500,7 +518,7 @@ with gr.Blocks(
|
|
500 |
interactive=False
|
501 |
)
|
502 |
|
503 |
-
# Упрощенный Dataframe
|
504 |
results_table = gr.Dataframe(
|
505 |
label="🔍 Детализация ответов",
|
506 |
headers=["Task ID", "Question", "Answer", "Status"],
|
@@ -528,5 +546,5 @@ if __name__ == "__main__":
|
|
528 |
server_port=7860,
|
529 |
share=False,
|
530 |
show_error=True,
|
531 |
-
debug=
|
532 |
)
|
|
|
22 |
|
23 |
# Конфигурация
|
24 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
25 |
+
MODEL_NAME = "google/flan-t5-large" # Упрощенная модель для CPU
|
26 |
API_RETRIES = 3
|
27 |
API_TIMEOUT = 45
|
28 |
|
|
|
32 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
logger.info(f"⚡ Инициализация GAIAThoughtProcessor на {self.device.upper()}")
|
34 |
|
35 |
+
try:
|
36 |
+
# Оптимизированная загрузка модели
|
37 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
38 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
39 |
+
MODEL_NAME,
|
40 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
41 |
+
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
|
42 |
+
low_cpu_mem_usage=True
|
43 |
+
).eval()
|
44 |
+
|
45 |
+
# Создаем пайплайн для генерации текста
|
46 |
+
self.text_generator = pipeline(
|
47 |
+
"text2text-generation",
|
48 |
+
model=self.model,
|
49 |
+
tokenizer=self.tokenizer,
|
50 |
+
device=self.device,
|
51 |
+
max_new_tokens=256
|
52 |
+
)
|
53 |
+
|
54 |
+
logger.info("✅ GAIAThoughtProcessor готов")
|
55 |
+
except Exception as e:
|
56 |
+
logger.exception("Ошибка инициализации модели")
|
57 |
+
raise RuntimeError(f"Ошибка инициализации: {str(e)}")
|
58 |
|
59 |
def _math_solver(self, expression: str) -> str:
|
60 |
"""Безопасное вычисление математических выражений"""
|
|
|
142 |
# Базовый анализ изображения
|
143 |
description = (
|
144 |
f"Format: {img.format}, Size: {img.size}, "
|
145 |
+
f"Mode: {img.mode}"
|
146 |
)
|
147 |
return description
|
148 |
except (UnidentifiedImageError, requests.exceptions.RequestException) as e:
|
|
|
193 |
def process_question(self, question: str, task_id: str) -> str:
|
194 |
"""Обработка вопроса с декомпозицией на шаги"""
|
195 |
try:
|
196 |
+
# Упрощенный промпт для CPU
|
197 |
+
prompt = f"Реши задачу шаг за шагом: {question}\n\nФинальный ответ:"
|
198 |
+
response = self._generate_response(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
# Извлечение чистого ответа
|
201 |
+
if "final_answer" in response:
|
202 |
+
return json.dumps({"final_answer": response})
|
203 |
else:
|
204 |
+
return json.dumps({"final_answer": response.strip()})
|
|
|
|
|
|
|
|
|
|
|
205 |
except Exception as e:
|
206 |
logger.exception("Processing failed")
|
207 |
return json.dumps({
|
|
|
228 |
# Получение вопросов
|
229 |
questions, status = self._fetch_questions()
|
230 |
if status != "success":
|
231 |
+
# Возвращаем ошибку в понятном формате
|
232 |
+
error_df = pd.DataFrame([{
|
233 |
+
"Task ID": "ERROR",
|
234 |
+
"Question": status,
|
235 |
+
"Answer": "Не удалось получить вопросы",
|
236 |
+
"Status": "Failed"
|
237 |
+
}])
|
238 |
+
return status, 0, 0, error_df
|
239 |
|
240 |
# Обработка вопросов
|
241 |
results = []
|
|
|
263 |
# Запись результатов
|
264 |
results.append({
|
265 |
"Task ID": task_id,
|
266 |
+
"Question": q["question"][:100] + "..." if len(q["question"]) > 100 else q["question"],
|
267 |
+
"Answer": final_answer[:100] + "..." if len(final_answer) > 100 else final_answer,
|
268 |
"Status": "Processed"
|
269 |
})
|
270 |
except Exception as e:
|
|
|
281 |
})
|
282 |
|
283 |
# Отправка ответов
|
284 |
+
try:
|
285 |
+
submission_result, score = self._submit_answers(username, agent_code, answers)
|
286 |
+
return submission_result, score, len(questions), pd.DataFrame(results)
|
287 |
+
except Exception as e:
|
288 |
+
error_message = f"Ошибка отправки: {str(e)}"
|
289 |
+
results.append({
|
290 |
+
"Task ID": "SUBMIT_ERROR",
|
291 |
+
"Question": error_message,
|
292 |
+
"Answer": "",
|
293 |
+
"Status": "Failed"
|
294 |
+
})
|
295 |
+
return error_message, 0, len(questions), pd.DataFrame(results)
|
296 |
|
297 |
def _fetch_questions(self) -> Tuple[list, str]:
|
298 |
"""Получение вопросов с API"""
|
299 |
+
for attempt in range(API_RETRIES):
|
300 |
try:
|
301 |
response = self.session.get(
|
302 |
self.questions_url,
|
|
|
306 |
if response.status_code == 200:
|
307 |
questions = response.json()
|
308 |
if not isinstance(questions, list):
|
309 |
+
return [], f"Неверный формат ответа: ожидался список, получен {type(questions)}"
|
310 |
|
311 |
# Добавление task_id если отсутствует
|
312 |
for q in questions:
|
|
|
314 |
return questions, "success"
|
315 |
|
316 |
elif response.status_code == 429:
|
317 |
+
wait_time = 2 ** attempt # Экспоненциальная задержка
|
318 |
+
logger.warning(f"Rate limited, retrying in {wait_time}s...")
|
319 |
+
time.sleep(wait_time)
|
320 |
continue
|
321 |
|
322 |
else:
|
323 |
+
return [], f"Ошибка API: HTTP {response.status_code} - {response.text}"
|
324 |
|
325 |
+
except requests.exceptions.RequestException as e:
|
326 |
+
logger.error(f"Ошибка соединения: {e}")
|
327 |
+
return [], f"Ошибка сети: {str(e)}"
|
328 |
except Exception as e:
|
329 |
+
logger.error(f"Неожиданная ошибка: {e}")
|
330 |
+
return [], f"Неожиданная ошибка: {str(e)}"
|
331 |
|
332 |
+
return [], "API недоступен после попыток"
|
333 |
|
334 |
def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
|
335 |
"""Отправка ответов на сервер"""
|
|
|
350 |
if response.status_code == 200:
|
351 |
result = response.json()
|
352 |
score = result.get("score", 0)
|
353 |
+
return result.get("message", "Ответы успешно отправлены"), score
|
354 |
|
355 |
elif response.status_code == 400:
|
356 |
+
error = response.json().get("error", "Неверный запрос")
|
357 |
+
logger.error(f"Ошибка валидации: {error}")
|
358 |
+
return f"Ошибка валидации: {error}", 0
|
359 |
|
360 |
elif response.status_code == 429:
|
361 |
+
wait_time = 5 * (attempt + 1)
|
362 |
+
logger.warning(f"Rate limited, retrying in {wait_time}s...")
|
363 |
+
time.sleep(wait_time)
|
364 |
continue
|
365 |
|
366 |
else:
|
367 |
+
return f"HTTP Ошибка {response.status_code} - {response.text}", 0
|
368 |
|
369 |
+
except requests.exceptions.RequestException as e:
|
370 |
+
logger.error(f"Ошибка отправки: {e}")
|
371 |
+
return f"Ошибка сети: {str(e)}", 0
|
372 |
except Exception as e:
|
373 |
+
logger.error(f"Неожиданная ошибка отправки: {e}")
|
374 |
+
return f"Неожиданная ошибка: {str(e)}", 0
|
375 |
|
376 |
+
return "Сбой отправки после попыток", 0
|
377 |
|
378 |
# === ИНТЕРФЕЙС GRADIO ===
|
379 |
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
|
|
|
380 |
try:
|
381 |
+
progress(0, desc="⚡ Инициализация GAIA Mastermind...")
|
382 |
agent = GAIAThoughtProcessor()
|
383 |
+
|
384 |
+
progress(0.1, desc="🌐 Подключение к GAIA API...")
|
385 |
+
runner = GAIAEvaluationRunner()
|
386 |
+
|
387 |
+
# Получение вопросов
|
388 |
+
progress(0.2, desc="📡 Получение вопросов...")
|
389 |
+
questions, status = runner._fetch_questions()
|
390 |
+
if status != "success":
|
391 |
+
error_message = f"Ошибка: {status}"
|
392 |
+
error_df = pd.DataFrame([{
|
393 |
+
"Task ID": "ERROR",
|
394 |
+
"Question": error_message,
|
395 |
+
"Answer": "Не удалось получить вопросы",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
"Status": "Failed"
|
397 |
+
}])
|
398 |
+
return error_message, 0, 0, error_df
|
399 |
+
|
400 |
+
total = len(questions)
|
401 |
+
if total == 0:
|
402 |
+
error_message = "Получено 0 вопросов"
|
403 |
+
error_df = pd.DataFrame([{
|
404 |
+
"Task ID": "ERROR",
|
405 |
+
"Question": error_message,
|
406 |
+
"Answer": "Нет данных",
|
407 |
+
"Status": "Failed"
|
408 |
+
}])
|
409 |
+
return error_message, 0, 0, error_df
|
410 |
+
|
411 |
+
# Обработка вопросов с прогрессом
|
412 |
+
results = []
|
413 |
+
answers = []
|
414 |
+
|
415 |
+
for i, q in enumerate(questions):
|
416 |
+
progress(i / total, desc=f"🧠 Обработка задачи {i+1}/{total}")
|
417 |
+
try:
|
418 |
+
task_id = q.get("task_id", f"unknown_{i}")
|
419 |
+
json_response = agent.process_question(q["question"], task_id)
|
420 |
+
|
421 |
+
# Парсинг ответа
|
422 |
+
try:
|
423 |
+
response_obj = json.loads(json_response)
|
424 |
+
final_answer = response_obj.get("final_answer", "")
|
425 |
+
except:
|
426 |
+
final_answer = json_response
|
427 |
+
|
428 |
+
answers.append({
|
429 |
+
"task_id": task_id,
|
430 |
+
"answer": str(final_answer)[:500]
|
431 |
+
})
|
432 |
+
|
433 |
+
results.append({
|
434 |
+
"Task ID": task_id,
|
435 |
+
"Question": q["question"][:100] + "..." if len(q["question"]) > 100 else q["question"],
|
436 |
+
"Answer": str(final_answer)[:100] + "..." if len(str(final_answer)) > 100 else str(final_answer),
|
437 |
+
"Status": "Processed"
|
438 |
+
})
|
439 |
+
except Exception as e:
|
440 |
+
logger.error(f"Task {task_id} failed: {e}")
|
441 |
+
answers.append({
|
442 |
+
"task_id": task_id,
|
443 |
+
"answer": f"ERROR: {str(e)}"
|
444 |
+
})
|
445 |
+
results.append({
|
446 |
+
"Task ID": task_id,
|
447 |
+
"Question": "Error",
|
448 |
+
"Answer": f"ERROR: {str(e)}",
|
449 |
+
"Status": "Failed"
|
450 |
+
})
|
451 |
+
|
452 |
+
# Отправка ответов
|
453 |
+
progress(0.9, desc="📤 Отправка результатов...")
|
454 |
+
submission_result, score = runner._submit_answers(username, agent_code, answers)
|
455 |
+
return submission_result, score, total, pd.DataFrame(results)
|
456 |
|
457 |
+
except Exception as e:
|
458 |
+
logger.exception("Critical error in run_evaluation")
|
459 |
+
error_message = f"Критическая ошибка: {str(e)}"
|
460 |
+
error_df = pd.DataFrame([{
|
461 |
+
"Task ID": "CRITICAL",
|
462 |
+
"Question": error_message,
|
463 |
+
"Answer": "См. логи",
|
464 |
+
"Status": "Failed"
|
465 |
+
}])
|
466 |
+
return error_message, 0, 0, error_df
|
467 |
|
468 |
# Создание интерфейса
|
469 |
with gr.Blocks(
|
|
|
518 |
interactive=False
|
519 |
)
|
520 |
|
521 |
+
# Упрощенный Dataframe
|
522 |
results_table = gr.Dataframe(
|
523 |
label="🔍 Детализация ответов",
|
524 |
headers=["Task ID", "Question", "Answer", "Status"],
|
|
|
546 |
server_port=7860,
|
547 |
share=False,
|
548 |
show_error=True,
|
549 |
+
debug=True # Включение детального лога
|
550 |
)
|