Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,13 @@ import re
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
-
import
|
6 |
-
from tqdm import tqdm
|
7 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
8 |
-
from typing import List, Dict, Any, Tuple, Optional
|
9 |
import json
|
10 |
-
import ast
|
11 |
-
import numpy as np
|
12 |
-
from PIL import Image, UnidentifiedImageError
|
13 |
-
import io
|
14 |
-
import base64
|
15 |
import logging
|
16 |
import time
|
17 |
import sys
|
|
|
|
|
18 |
|
19 |
# Настройка логирования
|
20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
@@ -22,267 +16,192 @@ logger = logging.getLogger("GAIA-Mastermind")
|
|
22 |
|
23 |
# Конфигурация
|
24 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
25 |
-
MODEL_NAME = "google/flan-t5-
|
26 |
API_RETRIES = 3
|
27 |
-
API_TIMEOUT =
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def __init__(self):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Оптимизированная загрузка модели для CPU
|
37 |
-
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
38 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
39 |
-
MODEL_NAME,
|
40 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
41 |
-
torch_dtype=torch.float32,
|
42 |
-
low_cpu_mem_usage=True
|
43 |
-
).eval()
|
44 |
|
45 |
-
#
|
46 |
-
self.
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
|
|
61 |
try:
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
70 |
)
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
-
|
79 |
-
return json.dumps({
|
80 |
-
"task_id": task_id,
|
81 |
-
"error": str(e),
|
82 |
-
"final_answer": f"ERROR: {str(e)}"
|
83 |
-
})
|
84 |
|
85 |
-
|
86 |
-
class GAIAEvaluationRunner:
|
87 |
def __init__(self, api_url: str = DEFAULT_API_URL):
|
88 |
self.api_url = api_url
|
89 |
self.questions_url = f"{api_url}/questions"
|
90 |
self.submit_url = f"{api_url}/submit"
|
91 |
self.session = requests.Session()
|
92 |
-
self.session.headers.update({
|
93 |
-
|
94 |
-
|
95 |
-
"Content-Type": "application/json"
|
96 |
-
})
|
97 |
-
logger.info(f"🌐 Инициализирован GAIAEvaluationRunner для {api_url}")
|
98 |
-
|
99 |
-
def _fetch_questions(self) -> Tuple[list, str]:
|
100 |
-
"""Получение вопросов с API"""
|
101 |
-
logger.info(f"🔍 Запрос вопросов с {self.questions_url}")
|
102 |
-
try:
|
103 |
-
response = self.session.get(
|
104 |
-
self.questions_url,
|
105 |
-
timeout=API_TIMEOUT
|
106 |
-
)
|
107 |
-
|
108 |
-
logger.info(f"Статус ответа: {response.status_code}")
|
109 |
-
|
110 |
-
if response.status_code == 200:
|
111 |
-
questions = response.json()
|
112 |
-
logger.info(f"Получено {len(questions)} вопросов")
|
113 |
-
return questions, "success"
|
114 |
-
else:
|
115 |
-
error_msg = f"Ошибка API: HTTP {response.status_code}"
|
116 |
-
logger.error(error_msg)
|
117 |
-
return [], error_msg
|
118 |
-
|
119 |
-
except Exception as e:
|
120 |
-
error_msg = f"Ошибка соединения: {str(e)}"
|
121 |
-
logger.exception(error_msg)
|
122 |
-
return [], error_msg
|
123 |
-
|
124 |
-
def _submit_answers(self, username: str, agent_code: str, answers: list) -> Tuple[str, int]:
|
125 |
-
"""Отправка ответов на сервер"""
|
126 |
-
logger.info(f"📤 Отправка ответов для пользователя {username}")
|
127 |
-
try:
|
128 |
-
payload = {
|
129 |
-
"username": username.strip(),
|
130 |
-
"agent_code": agent_code.strip(),
|
131 |
-
"answers": answers
|
132 |
-
}
|
133 |
-
|
134 |
-
response = self.session.post(
|
135 |
-
self.submit_url,
|
136 |
-
json=payload,
|
137 |
-
timeout=API_TIMEOUT * 2
|
138 |
-
)
|
139 |
-
|
140 |
-
logger.info(f"Статус отправки: {response.status_code}")
|
141 |
-
|
142 |
-
if response.status_code == 200:
|
143 |
-
result = response.json()
|
144 |
-
score = result.get("score", 0)
|
145 |
-
return result.get("message", "Ответы успешно отправлены"), score
|
146 |
-
else:
|
147 |
-
error = f"HTTP Ошибка {response.status_code}"
|
148 |
-
if response.text:
|
149 |
-
error += f": {response.text[:200]}"
|
150 |
-
logger.error(error)
|
151 |
-
return error, 0
|
152 |
-
|
153 |
-
except Exception as e:
|
154 |
-
error = f"Ошибка отправки: {str(e)}"
|
155 |
-
logger.exception(error)
|
156 |
-
return error, 0
|
157 |
|
158 |
-
def run_evaluation(self,
|
159 |
-
"""
|
160 |
-
#
|
161 |
-
|
162 |
-
questions, status = self._fetch_questions()
|
163 |
-
if status != "success":
|
164 |
-
return status, 0, 0, pd.DataFrame()
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
169 |
|
170 |
# Обработка вопросов
|
171 |
-
results = []
|
172 |
answers = []
|
173 |
|
174 |
for i, q in enumerate(questions):
|
175 |
-
|
|
|
|
|
176 |
try:
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
json_response = agent.process_question(q["question"], task_id)
|
181 |
-
|
182 |
-
# Парсинг ответа
|
183 |
-
try:
|
184 |
-
response_obj = json.loads(json_response)
|
185 |
-
final_answer = response_obj.get("final_answer", "")
|
186 |
-
except:
|
187 |
-
final_answer = json_response
|
188 |
|
189 |
answers.append({
|
190 |
"task_id": task_id,
|
191 |
-
"answer": str(
|
192 |
-
})
|
193 |
-
|
194 |
-
results.append({
|
195 |
-
"Task ID": task_id,
|
196 |
-
"Question": q["question"][:50] + "..." if len(q["question"]) > 50 else q["question"],
|
197 |
-
"Answer": str(final_answer)[:50] + "..." if len(str(final_answer)) > 50 else str(final_answer),
|
198 |
-
"Status": "Processed"
|
199 |
})
|
200 |
except Exception as e:
|
201 |
-
logger.error(f"Ошибка
|
202 |
answers.append({
|
203 |
"task_id": task_id,
|
204 |
"answer": f"ERROR: {str(e)}"
|
205 |
})
|
206 |
-
results.append({
|
207 |
-
"Task ID": task_id,
|
208 |
-
"Question": "Error",
|
209 |
-
"Answer": f"ERROR: {str(e)}",
|
210 |
-
"Status": "Failed"
|
211 |
-
})
|
212 |
|
213 |
-
# Отправка ответов
|
214 |
-
|
215 |
-
submission_result, score = self._submit_answers(username, agent_code, answers)
|
216 |
-
return submission_result, score, total_questions, pd.DataFrame(results)
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
logger.exception("Критическая ошибка в run_evaluation")
|
232 |
-
error_df = pd.DataFrame([{
|
233 |
-
"Task ID": "ERROR",
|
234 |
-
"Question": f"Критическая ошибка: {str(e)}",
|
235 |
-
"Answer": "См. логи",
|
236 |
-
"Status": "Failed"
|
237 |
-
}])
|
238 |
-
return f"Ошибка: {str(e)}", 0, 0, error_df
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
with gr.Column():
|
247 |
-
gr.Markdown("## 🔐 Авторизация")
|
248 |
-
username = gr.Textbox(label="HF Username", value="yoshizen")
|
249 |
-
agent_code = gr.Textbox(label="Agent Code", value="https://huggingface.co/spaces/yoshizen/FinalTest")
|
250 |
-
run_btn = gr.Button("Запустить оценку")
|
251 |
-
|
252 |
-
gr.Markdown("## ⚙️ Статус системы")
|
253 |
-
sys_info = gr.Textbox(label="Системная информация", interactive=False)
|
254 |
-
|
255 |
-
with gr.Column():
|
256 |
-
gr.Markdown("## 📊 Результаты GAIA")
|
257 |
-
with gr.Row():
|
258 |
-
result_output = gr.Textbox(label="Статус отправки", interactive=False)
|
259 |
-
correct_output = gr.Number(label="Правильные ответы", interactive=False)
|
260 |
-
total_output = gr.Number(label="Всего вопросов", interactive=False)
|
261 |
-
|
262 |
-
results_table = gr.Dataframe(
|
263 |
-
label="Детализация ответов",
|
264 |
-
headers=["Task ID", "Question", "Answer", "Status"],
|
265 |
-
interactive=False
|
266 |
-
)
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
return f"Device: {device} | Model: {MODEL_NAME} | API: {DEFAULT_API_URL}"
|
272 |
|
273 |
-
|
|
|
|
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
concurrency_limit=1
|
280 |
-
)
|
281 |
-
|
282 |
-
if __name__ == "__main__":
|
283 |
-
demo.queue(max_size=1).launch(
|
284 |
-
server_name="0.0.0.0",
|
285 |
-
server_port=7860,
|
286 |
-
share=False,
|
287 |
-
show_error=True
|
288 |
-
)
|
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
6 |
import json
|
|
|
|
|
|
|
|
|
|
|
7 |
import logging
|
8 |
import time
|
9 |
import sys
|
10 |
+
import os
|
11 |
+
from functools import lru_cache
|
12 |
|
13 |
# Настройка логирования
|
14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
16 |
|
17 |
# Конфигурация
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
+
MODEL_NAME = "google/flan-t5-small" # Используем меньшую модель для быстрой загрузки
|
20 |
API_RETRIES = 3
|
21 |
+
API_TIMEOUT = 30
|
22 |
|
23 |
+
# Настройка кэширования моделей
|
24 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
25 |
+
os.environ["HF_HOME"] = "/tmp/hf_home"
|
26 |
+
|
27 |
+
class GAIAExpert:
|
28 |
+
_instance = None
|
29 |
+
_is_initialized = False
|
30 |
+
|
31 |
+
def __new__(cls):
|
32 |
+
# Паттерн Singleton для предотвращения повторной загрузки модели
|
33 |
+
if cls._instance is None:
|
34 |
+
cls._instance = super(GAIAExpert, cls).__new__(cls)
|
35 |
+
return cls._instance
|
36 |
+
|
37 |
def __init__(self):
|
38 |
+
# Инициализируем только один раз
|
39 |
+
if not GAIAExpert._is_initialized:
|
40 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
+
logger.info(f"Инициализация модели на {self.device.upper()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Отложенная инициализация - токенизатор загружаем сразу, модель - по требованию
|
44 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
45 |
+
self.model = None
|
46 |
+
GAIAExpert._is_initialized = True
|
47 |
+
|
48 |
+
def _ensure_model_loaded(self):
|
49 |
+
"""Ленивая загрузка модели только при необходимости"""
|
50 |
+
if self.model is None:
|
51 |
+
try:
|
52 |
+
logger.info("Загрузка модели...")
|
53 |
+
# Оптимизированная загрузка модели
|
54 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
55 |
+
MODEL_NAME,
|
56 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
57 |
+
low_cpu_mem_usage=True,
|
58 |
+
device_map="auto" # Автоматическое распределение на доступные устройства
|
59 |
+
).eval()
|
60 |
+
logger.info("Модель успешно загружена")
|
61 |
+
except Exception as e:
|
62 |
+
logger.exception("Ошибка загрузки модели")
|
63 |
+
raise RuntimeError(f"Ошибка инициализации: {str(e)}")
|
64 |
|
65 |
+
@lru_cache(maxsize=100) # Кэширование ответов для повторяющихся вопросов
|
66 |
+
def process_question(self, question: str) -> str:
|
67 |
+
"""Обработка вопроса с оптимизацией и кэшированием"""
|
68 |
try:
|
69 |
+
# Загружаем модель только при первом вызове
|
70 |
+
self._ensure_model_loaded()
|
71 |
|
72 |
+
# Оптимизированная обработка токенов
|
73 |
+
inputs = self.tokenizer(
|
74 |
+
f"Вопрос: {question}\nОтвет:",
|
75 |
+
return_tensors="pt",
|
76 |
+
max_length=256,
|
77 |
+
truncation=True,
|
78 |
+
padding="max_length"
|
79 |
)
|
80 |
|
81 |
+
# Перемещаем тензоры на нужное устройство
|
82 |
+
if self.device == "cuda":
|
83 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
84 |
|
85 |
+
# Оптимизированная генерация
|
86 |
+
with torch.no_grad(): # Отключаем вычисление градиентов для экономии памяти
|
87 |
+
outputs = self.model.generate(
|
88 |
+
**inputs,
|
89 |
+
max_new_tokens=50,
|
90 |
+
num_beams=1, # Ускорение генерации
|
91 |
+
early_stopping=True,
|
92 |
+
do_sample=False # Детерминированная генерация для скорости
|
93 |
+
)
|
94 |
+
|
95 |
+
answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
+
return json.dumps({"final_answer": answer.strip()})
|
97 |
except Exception as e:
|
98 |
+
return json.dumps({"final_answer": f"ERROR: {str(e)}"})
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
class GAIAEvaluator:
|
|
|
101 |
def __init__(self, api_url: str = DEFAULT_API_URL):
|
102 |
self.api_url = api_url
|
103 |
self.questions_url = f"{api_url}/questions"
|
104 |
self.submit_url = f"{api_url}/submit"
|
105 |
self.session = requests.Session()
|
106 |
+
self.session.headers.update({"Content-Type": "application/json"})
|
107 |
+
# Настройка повторных попыток и таймаутов
|
108 |
+
self.session.mount('https://', requests.adapters.HTTPAdapter(max_retries=API_RETRIES))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
def run_evaluation(self, username: str, agent_code: str):
|
111 |
+
"""Консольный процесс оценки без интерфейса"""
|
112 |
+
# Создаем агента только при необходимости
|
113 |
+
agent = GAIAExpert()
|
|
|
|
|
|
|
114 |
|
115 |
+
# Получение вопросов с повторными попытками
|
116 |
+
questions = self._fetch_questions_with_retry()
|
117 |
+
if not isinstance(questions, list):
|
118 |
+
logger.error(f"Ошибка получения вопросов: {questions}")
|
119 |
+
return 0, 0
|
120 |
|
121 |
# Обработка вопросов
|
|
|
122 |
answers = []
|
123 |
|
124 |
for i, q in enumerate(questions):
|
125 |
+
task_id = q.get("task_id", f"task_{i}")
|
126 |
+
logger.info(f"Обработка задачи {i+1}/{len(questions)}: {q['question'][:50]}...")
|
127 |
+
|
128 |
try:
|
129 |
+
json_response = agent.process_question(q["question"])
|
130 |
+
response_obj = json.loads(json_response)
|
131 |
+
answer = response_obj.get("final_answer", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
answers.append({
|
134 |
"task_id": task_id,
|
135 |
+
"answer": str(answer)[:300]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
})
|
137 |
except Exception as e:
|
138 |
+
logger.error(f"Ошибка обработки: {str(e)}")
|
139 |
answers.append({
|
140 |
"task_id": task_id,
|
141 |
"answer": f"ERROR: {str(e)}"
|
142 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
# Отправка ответов с повторными попытками
|
145 |
+
return self._submit_answers_with_retry(username, agent_code, answers)
|
|
|
|
|
146 |
|
147 |
+
def _fetch_questions_with_retry(self, max_retries=3):
|
148 |
+
"""Получение вопросов с API с повторными попытками"""
|
149 |
+
for attempt in range(max_retries):
|
150 |
+
try:
|
151 |
+
response = self.session.get(self.questions_url, timeout=API_TIMEOUT)
|
152 |
+
if response.status_code == 200:
|
153 |
+
return response.json()
|
154 |
+
logger.warning(f"HTTP error {response.status_code}, попытка {attempt+1}/{max_retries}")
|
155 |
+
time.sleep(2 ** attempt) # Экспоненциальная задержка между попытками
|
156 |
+
except Exception as e:
|
157 |
+
logger.warning(f"Connection error: {str(e)}, попытка {attempt+1}/{max_retries}")
|
158 |
+
time.sleep(2 ** attempt)
|
159 |
+
return f"Failed after {max_retries} attempts"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
def _submit_answers_with_retry(self, username: str, agent_code: str, answers: list, max_retries=3):
|
162 |
+
"""Отправка ответов на сервер с повторными попытками"""
|
163 |
+
for attempt in range(max_retries):
|
164 |
+
try:
|
165 |
+
payload = {
|
166 |
+
"username": username.strip(),
|
167 |
+
"agent_code": agent_code.strip(),
|
168 |
+
"answers": answers
|
169 |
+
}
|
170 |
+
|
171 |
+
response = self.session.post(
|
172 |
+
self.submit_url,
|
173 |
+
json=payload,
|
174 |
+
timeout=API_TIMEOUT * 2
|
175 |
+
)
|
176 |
+
|
177 |
+
if response.status_code == 200:
|
178 |
+
result = response.json()
|
179 |
+
score = result.get("score", 0)
|
180 |
+
return score, len(answers)
|
181 |
+
|
182 |
+
logger.warning(f"HTTP error {response.status_code}, попытка {attempt+1}/{max_retries}")
|
183 |
+
time.sleep(2 ** attempt)
|
184 |
+
except Exception as e:
|
185 |
+
logger.error(f"Ошибка отправки: {str(e)}, попытка {attempt+1}/{max_retries}")
|
186 |
+
time.sleep(2 ** attempt)
|
187 |
+
return 0, len(answers)
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
# Параметры запуска
|
191 |
+
USERNAME = "yoshizen"
|
192 |
+
AGENT_CODE = "https://huggingface.co/spaces/yoshizen/FinalTest"
|
193 |
|
194 |
+
logger.info(f"Запуск оценки для {USERNAME}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
start_time = time.time()
|
197 |
+
evaluator = GAIAEvaluator()
|
198 |
+
score, total = evaluator.run_evaluation(USERNAME, AGENT_CODE)
|
|
|
199 |
|
200 |
+
elapsed = time.time() - start_time
|
201 |
+
logger.info(f"Оценка завершена за {elapsed:.1f} сек")
|
202 |
+
logger.info(f"Результат: {score}/{total} правильных ответов")
|
203 |
|
204 |
+
if total > 0:
|
205 |
+
logger.info(f"Точность: {score/total*100:.1f}%")
|
206 |
+
else:
|
207 |
+
logger.error("Не удалось обработать ни одного вопроса")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|