Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
"""
|
2 |
-
Улучшенный GAIA Agent с поддержкой кэширования ответов и исправленным полем agent_code
|
3 |
-
"""
|
4 |
-
|
5 |
-
|
6 |
import os
|
7 |
import json
|
8 |
import time
|
@@ -10,188 +5,18 @@ import torch
|
|
10 |
import requests
|
11 |
import gradio as gr
|
12 |
import pandas as pd
|
13 |
-
from huggingface_hub import login
|
14 |
from typing import List, Dict, Any, Optional, Union, Callable, Tuple
|
15 |
-
from
|
16 |
-
|
17 |
|
18 |
# Константы
|
19 |
-
CACHE_FILE = "gaia_answers_cache.json"
|
20 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
21 |
-
MAX_RETRIES = 3
|
22 |
-
RETRY_DELAY = 5
|
23 |
-
|
24 |
-
class EnhancedGAIAAgent:
|
25 |
-
"""
|
26 |
-
Улучшенный агент для Hugging Face GAIA с поддержкой кэширования ответов
|
27 |
-
"""
|
28 |
-
|
29 |
-
def __init__(self, model_name="google/flan-t5-base", use_cache=True):
|
30 |
-
"""
|
31 |
-
Инициализация агента с моделью и кэшем
|
32 |
-
|
33 |
-
Args:
|
34 |
-
model_name: Название модели для загрузки
|
35 |
-
use_cache: Использовать ли кэширование ответов
|
36 |
-
"""
|
37 |
-
print(f"Initializing EnhancedGAIAAgent with model: {model_name}")
|
38 |
-
self.model_name = model_name
|
39 |
-
self.use_cache = use_cache
|
40 |
-
self.cache = self._load_cache() if use_cache else {}
|
41 |
-
|
42 |
-
# Загружаем модель и токенизатор
|
43 |
-
print("Loading tokenizer...")
|
44 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
-
print("Loading model...")
|
46 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
47 |
-
print("Model and tokenizer loaded successfully")
|
48 |
-
|
49 |
-
def _load_cache(self) -> Dict[str, str]:
|
50 |
-
"""
|
51 |
-
Загружает кэш ответов из файла
|
52 |
-
|
53 |
-
Returns:
|
54 |
-
Dict[str, str]: Словарь с кэшированными ответами
|
55 |
-
"""
|
56 |
-
if os.path.exists(CACHE_FILE):
|
57 |
-
try:
|
58 |
-
with open(CACHE_FILE, 'r', encoding='utf-8') as f:
|
59 |
-
print(f"Loading cache from {CACHE_FILE}")
|
60 |
-
return json.load(f)
|
61 |
-
except Exception as e:
|
62 |
-
print(f"Error loading cache: {e}")
|
63 |
-
return {}
|
64 |
-
else:
|
65 |
-
print(f"Cache file {CACHE_FILE} not found, creating new cache")
|
66 |
-
return {}
|
67 |
-
|
68 |
-
def _save_cache(self) -> None:
|
69 |
-
"""
|
70 |
-
Сохраняет кэш ответов в файл
|
71 |
-
"""
|
72 |
-
try:
|
73 |
-
with open(CACHE_FILE, 'w', encoding='utf-8') as f:
|
74 |
-
json.dump(self.cache, f, ensure_ascii=False, indent=2)
|
75 |
-
print(f"Cache saved to {CACHE_FILE}")
|
76 |
-
except Exception as e:
|
77 |
-
print(f"Error saving cache: {e}")
|
78 |
-
|
79 |
-
def _classify_question(self, question: str) -> str:
|
80 |
-
"""
|
81 |
-
Классифицирует вопрос по типу для лучшего форматирования ответа
|
82 |
-
|
83 |
-
Args:
|
84 |
-
question: Текст вопроса
|
85 |
-
|
86 |
-
Returns:
|
87 |
-
str: Тип вопроса (factual, calculation, list, date_time, etc.)
|
88 |
-
"""
|
89 |
-
# Простая эвристическая классификация
|
90 |
-
question_lower = question.lower()
|
91 |
-
|
92 |
-
if any(word in question_lower for word in ["calculate", "sum", "product", "divide", "multiply", "add", "subtract", "how many"]):
|
93 |
-
return "calculation"
|
94 |
-
elif any(word in question_lower for word in ["list", "enumerate", "items", "elements"]):
|
95 |
-
return "list"
|
96 |
-
elif any(word in question_lower for word in ["date", "time", "day", "month", "year", "when"]):
|
97 |
-
return "date_time"
|
98 |
-
else:
|
99 |
-
return "factual"
|
100 |
-
|
101 |
-
def _format_answer(self, raw_answer: str, question_type: str) -> str:
|
102 |
-
"""
|
103 |
-
Форматирует ответ в соответствии с типом вопроса
|
104 |
-
|
105 |
-
Args:
|
106 |
-
raw_answer: Необработанный ответ от модели
|
107 |
-
question_type: Тип вопроса
|
108 |
-
|
109 |
-
Returns:
|
110 |
-
str: Отформатированный ответ
|
111 |
-
"""
|
112 |
-
# Удаляем лишние пробелы и переносы строк
|
113 |
-
answer = raw_answer.strip()
|
114 |
-
|
115 |
-
# Удаляем префиксы, которые часто добавляет модель
|
116 |
-
prefixes = ["Answer:", "The answer is:", "I think", "I believe", "According to", "Based on"]
|
117 |
-
for prefix in prefixes:
|
118 |
-
if answer.startswith(prefix):
|
119 |
-
answer = answer[len(prefix):].strip()
|
120 |
-
|
121 |
-
# Специфическ��е форматирование в зависимости от типа вопроса
|
122 |
-
if question_type == "calculation":
|
123 |
-
# Для числовых ответов удаляем лишний текст
|
124 |
-
# Оставляем только числа, если они есть
|
125 |
-
import re
|
126 |
-
numbers = re.findall(r'-?\d+\.?\d*', answer)
|
127 |
-
if numbers:
|
128 |
-
answer = numbers[0]
|
129 |
-
elif question_type == "list":
|
130 |
-
# Для списков убеждаемся, что элементы разделены запятыми
|
131 |
-
if "," not in answer and " " in answer:
|
132 |
-
items = [item.strip() for item in answer.split() if item.strip()]
|
133 |
-
answer = ", ".join(items)
|
134 |
-
|
135 |
-
return answer
|
136 |
-
|
137 |
-
def __call__(self, question: str, task_id: Optional[str] = None) -> str:
|
138 |
-
"""
|
139 |
-
Обрабатывает вопрос и возвращает ответ
|
140 |
-
|
141 |
-
Args:
|
142 |
-
question: Текст вопроса
|
143 |
-
task_id: Идентификатор задачи (опционально)
|
144 |
-
|
145 |
-
Returns:
|
146 |
-
str: Ответ в формате JSON с ключом final_answer
|
147 |
-
"""
|
148 |
-
# Создаем ключ для кэша (используем task_id, если доступен)
|
149 |
-
cache_key = task_id if task_id else question
|
150 |
-
|
151 |
-
# Проверяем наличие ответа в кэше
|
152 |
-
if self.use_cache and cache_key in self.cache:
|
153 |
-
print(f"Cache hit for question: {question[:50]}...")
|
154 |
-
return self.cache[cache_key]
|
155 |
-
|
156 |
-
# Классифицируем вопрос
|
157 |
-
question_type = self._classify_question(question)
|
158 |
-
print(f"Processing question: {question[:100]}...")
|
159 |
-
print(f"Classified as: {question_type}")
|
160 |
-
|
161 |
-
try:
|
162 |
-
# Генерируем ответ с помощью модели
|
163 |
-
inputs = self.tokenizer(question, return_tensors="pt")
|
164 |
-
outputs = self.model.generate(**inputs, max_length=100)
|
165 |
-
raw_answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
166 |
-
|
167 |
-
# Форматируем ответ
|
168 |
-
formatted_answer = self._format_answer(raw_answer, question_type)
|
169 |
-
|
170 |
-
# Формируем JSON-ответ
|
171 |
-
result = {"final_answer": formatted_answer}
|
172 |
-
json_response = json.dumps(result)
|
173 |
-
|
174 |
-
# Сохраняем в кэш
|
175 |
-
if self.use_cache:
|
176 |
-
self.cache[cache_key] = json_response
|
177 |
-
self._save_cache()
|
178 |
-
|
179 |
-
return json_response
|
180 |
-
|
181 |
-
except Exception as e:
|
182 |
-
error_msg = f"Error generating answer: {e}"
|
183 |
-
print(error_msg)
|
184 |
-
return json.dumps({"final_answer": f"AGENT ERROR: {e}"})
|
185 |
-
|
186 |
|
187 |
class EvaluationRunner:
|
188 |
-
"""
|
189 |
-
Обрабатывает процесс оценки: получение вопросов, запуск агента,
|
190 |
-
и отправку ответов на сервер оценки.
|
191 |
-
"""
|
192 |
|
193 |
def __init__(self, api_url=DEFAULT_API_URL):
|
194 |
-
"""Инициализация с API endpoints."""
|
195 |
self.api_url = api_url
|
196 |
self.questions_url = f"{api_url}/questions"
|
197 |
self.submit_url = f"{api_url}/submit"
|
@@ -202,14 +27,7 @@ class EvaluationRunner:
|
|
202 |
def run_evaluation(self,
|
203 |
agent: Callable[[str], str],
|
204 |
username: str,
|
205 |
-
|
206 |
-
"""
|
207 |
-
Запускает полный процесс оценки:
|
208 |
-
1. Получает вопросы
|
209 |
-
2. Запускает агента на всех вопросах
|
210 |
-
3. Отправляет ответы
|
211 |
-
4. Возвращает результаты
|
212 |
-
"""
|
213 |
# Получаем вопросы
|
214 |
questions_data = self._fetch_questions()
|
215 |
if isinstance(questions_data, str): # Сообщение об ошибке
|
@@ -220,49 +38,34 @@ class EvaluationRunner:
|
|
220 |
if not answers_payload:
|
221 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
222 |
|
223 |
-
# Отправляем ответы
|
224 |
-
submission_result = self._submit_answers(username,
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
# Возвращаем результаты
|
227 |
return submission_result, pd.DataFrame(results_log)
|
228 |
|
229 |
def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
|
230 |
-
"""Получает вопросы с сервера оценки."""
|
231 |
-
print(f"Fetching questions from: {self.questions_url}")
|
232 |
try:
|
233 |
response = requests.get(self.questions_url, timeout=15)
|
234 |
response.raise_for_status()
|
235 |
questions_data = response.json()
|
236 |
|
237 |
if not questions_data:
|
238 |
-
|
239 |
-
print(error_msg)
|
240 |
-
return error_msg
|
241 |
|
242 |
self.total_questions = len(questions_data)
|
243 |
print(f"Successfully fetched {self.total_questions} questions.")
|
244 |
return questions_data
|
245 |
|
246 |
-
except requests.exceptions.RequestException as e:
|
247 |
-
error_msg = f"Error fetching questions: {e}"
|
248 |
-
print(error_msg)
|
249 |
-
return error_msg
|
250 |
-
|
251 |
-
except requests.exceptions.JSONDecodeError as e:
|
252 |
-
error_msg = f"Error decoding JSON response from questions endpoint: {e}"
|
253 |
-
print(error_msg)
|
254 |
-
print(f"Response text: {response.text[:500]}")
|
255 |
-
return error_msg
|
256 |
-
|
257 |
except Exception as e:
|
258 |
-
|
259 |
-
print(error_msg)
|
260 |
-
return error_msg
|
261 |
|
262 |
def _run_agent_on_questions(self,
|
263 |
agent: Any,
|
264 |
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
265 |
-
"""Запускает агента на всех вопросах и собирает результаты."""
|
266 |
results_log = []
|
267 |
answers_payload = []
|
268 |
|
@@ -272,17 +75,11 @@ class EvaluationRunner:
|
|
272 |
question_text = item.get("question")
|
273 |
|
274 |
if not task_id or question_text is None:
|
275 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
276 |
continue
|
277 |
|
278 |
try:
|
279 |
-
# Вызываем агента с task_id для правильного форматирования
|
280 |
json_response = agent(question_text, task_id)
|
281 |
-
|
282 |
-
# Парсим JSON-ответ
|
283 |
response_obj = json.loads(json_response)
|
284 |
-
|
285 |
-
# Извлекаем final_answer для отправки
|
286 |
submitted_answer = response_obj.get("final_answer", "")
|
287 |
|
288 |
answers_payload.append({
|
@@ -297,7 +94,6 @@ class EvaluationRunner:
|
|
297 |
"Full Response": json_response
|
298 |
})
|
299 |
except Exception as e:
|
300 |
-
print(f"Error running agent on task {task_id}: {e}")
|
301 |
results_log.append({
|
302 |
"Task ID": task_id,
|
303 |
"Question": question_text,
|
@@ -308,23 +104,19 @@ class EvaluationRunner:
|
|
308 |
|
309 |
def _submit_answers(self,
|
310 |
username: str,
|
311 |
-
|
312 |
answers_payload: List[Dict[str, Any]]) -> str:
|
313 |
-
"""Отправляет ответы на сервер оценки."""
|
314 |
-
# ИСПРАВЛЕНО: Используем agent_code вместо agent_code_url
|
315 |
submission_data = {
|
316 |
"username": username.strip(),
|
317 |
-
"agent_code":
|
318 |
"answers": answers_payload
|
319 |
}
|
320 |
|
321 |
print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
|
322 |
-
|
323 |
-
retry_delay = RETRY_DELAY
|
324 |
|
325 |
-
for attempt in range(1,
|
326 |
try:
|
327 |
-
print(f"Submission attempt {attempt} of {max_retries}...")
|
328 |
response = requests.post(
|
329 |
self.submit_url,
|
330 |
json=submission_data,
|
@@ -335,119 +127,56 @@ class EvaluationRunner:
|
|
335 |
|
336 |
try:
|
337 |
result = response.json()
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
return f"Evaluation complete! Score: {score}/{max_score}"
|
344 |
-
else:
|
345 |
-
print(f"Received N/A results. Waiting {retry_delay} seconds before retry...")
|
346 |
-
time.sleep(retry_delay)
|
347 |
-
continue
|
348 |
-
|
349 |
-
except requests.exceptions.JSONDecodeError:
|
350 |
-
print(f"Submission attempt {attempt}: Response was not JSON. Response: {response.text}")
|
351 |
-
if attempt < max_retries:
|
352 |
-
print(f"Waiting {retry_delay} seconds before retry...")
|
353 |
-
time.sleep(retry_delay)
|
354 |
-
else:
|
355 |
-
return f"Submission successful, but response was not JSON. Response: {response.text}"
|
356 |
|
357 |
-
except
|
358 |
print(f"Submission attempt {attempt} failed: {e}")
|
359 |
-
|
360 |
-
print(f"Waiting {retry_delay} seconds before retry...")
|
361 |
-
time.sleep(retry_delay)
|
362 |
-
else:
|
363 |
-
return f"Error submitting answers after {max_retries} attempts: {e}"
|
364 |
|
365 |
-
|
366 |
-
return "Submission Successful, but results are pending!"
|
367 |
|
368 |
def _check_results(self, username: str) -> None:
|
369 |
-
"""Проверяет результаты для подсчета правильных ответов."""
|
370 |
try:
|
371 |
results_url = f"{self.results_url}?username={username}"
|
372 |
-
print(f"Checking results at: {results_url}")
|
373 |
-
|
374 |
response = requests.get(results_url, timeout=15)
|
375 |
if response.status_code == 200:
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
score = data.get("score")
|
380 |
-
if score is not None:
|
381 |
-
self.correct_answers = int(score)
|
382 |
-
print(f"✓ Correct answers: {self.correct_answers}/{self.total_questions}")
|
383 |
-
else:
|
384 |
-
print("Score information not available in results")
|
385 |
-
else:
|
386 |
-
print("Results data is not in expected format")
|
387 |
-
except:
|
388 |
-
print("Could not parse results JSON")
|
389 |
-
else:
|
390 |
-
print(f"Could not fetch results, status code: {response.status_code}")
|
391 |
except Exception as e:
|
392 |
print(f"Error checking results: {e}")
|
393 |
|
394 |
def get_correct_answers_count(self) -> int:
|
395 |
-
"""Возвращает количество правильных ответов."""
|
396 |
return self.correct_answers
|
397 |
|
398 |
def get_total_questions_count(self) -> int:
|
399 |
-
"""Возвращает общее количество вопросов."""
|
400 |
return self.total_questions
|
401 |
|
402 |
def print_evaluation_summary(self, username: str) -> None:
|
403 |
-
"""Выводит сводку результатов оценки."""
|
404 |
print("\n===== EVALUATION SUMMARY =====")
|
405 |
print(f"User: {username}")
|
406 |
print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
|
407 |
-
print(f"Correct Answers: {self.correct_answers}")
|
408 |
-
print(f"Total Questions: {self.total_questions}")
|
409 |
-
print(f"Accuracy: {(self.correct_answers / self.total_questions * 100) if self.total_questions > 0 else 0:.1f}%")
|
410 |
print("=============================\n")
|
411 |
|
412 |
|
413 |
def run_evaluation(username: str,
|
414 |
-
|
415 |
-
model_name: str = "google/flan-t5-
|
416 |
-
use_cache: bool =
|
417 |
-
"""
|
418 |
-
Запускает полный процесс оценки с поддержкой кэширования
|
419 |
-
|
420 |
-
Args:
|
421 |
-
username: Имя пользователя Hugging Face
|
422 |
-
agent_code_url: URL кода агента (или код агента)
|
423 |
-
model_name: Название модели для использования
|
424 |
-
use_cache: Использовать ли кэширование ответов
|
425 |
-
|
426 |
-
Returns:
|
427 |
-
Tuple[str, int, int, str, str, str]: Кортеж и�� 6 значений:
|
428 |
-
- result_text: Текстовый результат оценки
|
429 |
-
- correct_answers: Количество правильных ответов
|
430 |
-
- total_questions: Общее количество вопросов
|
431 |
-
- elapsed_time: Время выполнения
|
432 |
-
- results_url: URL для проверки результатов
|
433 |
-
- cache_status: Статус кэширования
|
434 |
-
"""
|
435 |
start_time = time.time()
|
436 |
|
437 |
-
# Инициализируем агента
|
438 |
agent = EnhancedGAIAAgent(model_name=model_name, use_cache=use_cache)
|
439 |
|
440 |
-
# Инициализируем runner
|
441 |
runner = EvaluationRunner(api_url=DEFAULT_API_URL)
|
442 |
|
443 |
# Запускаем оценку
|
444 |
-
result, results_log = runner.run_evaluation(agent, username,
|
445 |
-
|
446 |
-
# Проверяем результаты
|
447 |
-
runner._check_results(username)
|
448 |
-
|
449 |
-
# Выводим сводку
|
450 |
-
runner.print_evaluation_summary(username)
|
451 |
|
452 |
# Вычисляем время выполнения
|
453 |
elapsed_time = time.time() - start_time
|
@@ -455,39 +184,32 @@ def run_evaluation(username: str,
|
|
455 |
|
456 |
# Формируем URL результатов
|
457 |
results_url = f"{DEFAULT_API_URL}/results?username={username}"
|
458 |
-
|
459 |
-
# Формируем статус кэширования
|
460 |
cache_status = "Cache enabled and used" if use_cache else "Cache disabled"
|
461 |
|
462 |
-
# ИСПРАВЛЕНО: Возвращаем 6 отдельных значений вместо словаря
|
463 |
return (
|
464 |
-
result,
|
465 |
-
runner.get_correct_answers_count(),
|
466 |
-
runner.get_total_questions_count(),
|
467 |
-
elapsed_time_str,
|
468 |
-
results_url,
|
469 |
-
cache_status
|
470 |
)
|
471 |
|
472 |
|
473 |
def create_gradio_interface():
|
474 |
-
"""
|
475 |
-
Создает Gradio интерфейс для запуска оценки
|
476 |
-
"""
|
477 |
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
|
478 |
-
gr.Markdown("# GAIA Agent Evaluation
|
479 |
|
480 |
with gr.Row():
|
481 |
with gr.Column():
|
482 |
username = gr.Textbox(label="Hugging Face Username")
|
483 |
-
|
484 |
model_name = gr.Dropdown(
|
485 |
label="Model",
|
486 |
choices=["google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large"],
|
487 |
-
value="google/flan-t5-
|
488 |
)
|
489 |
-
use_cache = gr.Checkbox(label="Use Answer Cache", value=
|
490 |
-
|
491 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
492 |
|
493 |
with gr.Column():
|
@@ -500,7 +222,7 @@ def create_gradio_interface():
|
|
500 |
|
501 |
run_button.click(
|
502 |
fn=run_evaluation,
|
503 |
-
inputs=[username,
|
504 |
outputs=[
|
505 |
result_text,
|
506 |
correct_answers,
|
@@ -515,6 +237,5 @@ def create_gradio_interface():
|
|
515 |
|
516 |
|
517 |
if __name__ == "__main__":
|
518 |
-
# Создаем и запускаем Gradio интерфейс
|
519 |
demo = create_gradio_interface()
|
520 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import time
|
|
|
5 |
import requests
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
|
|
8 |
from typing import List, Dict, Any, Optional, Union, Callable, Tuple
|
9 |
+
from agent import EnhancedGAIAAgent # Импорт из отдельного файла
|
|
|
10 |
|
11 |
# Константы
|
|
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
+
MAX_RETRIES = 3
|
14 |
+
RETRY_DELAY = 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class EvaluationRunner:
|
17 |
+
"""Обрабатывает процесс оценки: получение вопросов, запуск агента, отправку ответов"""
|
|
|
|
|
|
|
18 |
|
19 |
def __init__(self, api_url=DEFAULT_API_URL):
|
|
|
20 |
self.api_url = api_url
|
21 |
self.questions_url = f"{api_url}/questions"
|
22 |
self.submit_url = f"{api_url}/submit"
|
|
|
27 |
def run_evaluation(self,
|
28 |
agent: Callable[[str], str],
|
29 |
username: str,
|
30 |
+
agent_code: str) -> tuple[str, pd.DataFrame]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Получаем вопросы
|
32 |
questions_data = self._fetch_questions()
|
33 |
if isinstance(questions_data, str): # Сообщение об ошибке
|
|
|
38 |
if not answers_payload:
|
39 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
40 |
|
41 |
+
# Отправляем ответы
|
42 |
+
submission_result = self._submit_answers(username, agent_code, answers_payload)
|
43 |
+
|
44 |
+
# Проверяем результаты
|
45 |
+
self._check_results(username)
|
46 |
+
self.print_evaluation_summary(username)
|
47 |
|
|
|
48 |
return submission_result, pd.DataFrame(results_log)
|
49 |
|
50 |
def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
|
|
|
|
|
51 |
try:
|
52 |
response = requests.get(self.questions_url, timeout=15)
|
53 |
response.raise_for_status()
|
54 |
questions_data = response.json()
|
55 |
|
56 |
if not questions_data:
|
57 |
+
return "Fetched questions list is empty or invalid format."
|
|
|
|
|
58 |
|
59 |
self.total_questions = len(questions_data)
|
60 |
print(f"Successfully fetched {self.total_questions} questions.")
|
61 |
return questions_data
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
except Exception as e:
|
64 |
+
return f"Error fetching questions: {e}"
|
|
|
|
|
65 |
|
66 |
def _run_agent_on_questions(self,
|
67 |
agent: Any,
|
68 |
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
|
|
69 |
results_log = []
|
70 |
answers_payload = []
|
71 |
|
|
|
75 |
question_text = item.get("question")
|
76 |
|
77 |
if not task_id or question_text is None:
|
|
|
78 |
continue
|
79 |
|
80 |
try:
|
|
|
81 |
json_response = agent(question_text, task_id)
|
|
|
|
|
82 |
response_obj = json.loads(json_response)
|
|
|
|
|
83 |
submitted_answer = response_obj.get("final_answer", "")
|
84 |
|
85 |
answers_payload.append({
|
|
|
94 |
"Full Response": json_response
|
95 |
})
|
96 |
except Exception as e:
|
|
|
97 |
results_log.append({
|
98 |
"Task ID": task_id,
|
99 |
"Question": question_text,
|
|
|
104 |
|
105 |
def _submit_answers(self,
|
106 |
username: str,
|
107 |
+
agent_code: str,
|
108 |
answers_payload: List[Dict[str, Any]]) -> str:
|
|
|
|
|
109 |
submission_data = {
|
110 |
"username": username.strip(),
|
111 |
+
"agent_code": agent_code.strip(), # Ключевое исправление: agent_code вместо agent_code_url
|
112 |
"answers": answers_payload
|
113 |
}
|
114 |
|
115 |
print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
|
116 |
+
print("Submission data:", json.dumps(submission_data, indent=2))
|
|
|
117 |
|
118 |
+
for attempt in range(1, MAX_RETRIES + 1):
|
119 |
try:
|
|
|
120 |
response = requests.post(
|
121 |
self.submit_url,
|
122 |
json=submission_data,
|
|
|
127 |
|
128 |
try:
|
129 |
result = response.json()
|
130 |
+
if "message" in result:
|
131 |
+
return result["message"]
|
132 |
+
return "Evaluation submitted successfully"
|
133 |
+
except:
|
134 |
+
return f"Submission successful, but response was not JSON: {response.text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
except Exception as e:
|
137 |
print(f"Submission attempt {attempt} failed: {e}")
|
138 |
+
time.sleep(RETRY_DELAY)
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
return "Error submitting answers after multiple attempts"
|
|
|
141 |
|
142 |
def _check_results(self, username: str) -> None:
|
|
|
143 |
try:
|
144 |
results_url = f"{self.results_url}?username={username}"
|
|
|
|
|
145 |
response = requests.get(results_url, timeout=15)
|
146 |
if response.status_code == 200:
|
147 |
+
data = response.json()
|
148 |
+
if isinstance(data, dict) and "score" in data:
|
149 |
+
self.correct_answers = int(data["score"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
except Exception as e:
|
151 |
print(f"Error checking results: {e}")
|
152 |
|
153 |
def get_correct_answers_count(self) -> int:
|
|
|
154 |
return self.correct_answers
|
155 |
|
156 |
def get_total_questions_count(self) -> int:
|
|
|
157 |
return self.total_questions
|
158 |
|
159 |
def print_evaluation_summary(self, username: str) -> None:
|
|
|
160 |
print("\n===== EVALUATION SUMMARY =====")
|
161 |
print(f"User: {username}")
|
162 |
print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
|
|
|
|
|
|
|
163 |
print("=============================\n")
|
164 |
|
165 |
|
166 |
def run_evaluation(username: str,
|
167 |
+
agent_code: str, # Исправлено имя параметра
|
168 |
+
model_name: str = "google/flan-t5-base",
|
169 |
+
use_cache: bool = False) -> Tuple[str, int, int, str, str, str]: # Кэш отключен по умолчанию
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
start_time = time.time()
|
171 |
|
172 |
+
# Инициализируем агента
|
173 |
agent = EnhancedGAIAAgent(model_name=model_name, use_cache=use_cache)
|
174 |
|
175 |
+
# Инициализируем runner
|
176 |
runner = EvaluationRunner(api_url=DEFAULT_API_URL)
|
177 |
|
178 |
# Запускаем оценку
|
179 |
+
result, results_log = runner.run_evaluation(agent, username, agent_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# Вычисляем время выполнения
|
182 |
elapsed_time = time.time() - start_time
|
|
|
184 |
|
185 |
# Формируем URL результатов
|
186 |
results_url = f"{DEFAULT_API_URL}/results?username={username}"
|
|
|
|
|
187 |
cache_status = "Cache enabled and used" if use_cache else "Cache disabled"
|
188 |
|
|
|
189 |
return (
|
190 |
+
result,
|
191 |
+
runner.get_correct_answers_count(),
|
192 |
+
runner.get_total_questions_count(),
|
193 |
+
elapsed_time_str,
|
194 |
+
results_url,
|
195 |
+
cache_status
|
196 |
)
|
197 |
|
198 |
|
199 |
def create_gradio_interface():
|
|
|
|
|
|
|
200 |
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
|
201 |
+
gr.Markdown("# GAIA Agent Evaluation")
|
202 |
|
203 |
with gr.Row():
|
204 |
with gr.Column():
|
205 |
username = gr.Textbox(label="Hugging Face Username")
|
206 |
+
agent_code = gr.Textbox(label="Agent Code", lines=2, placeholder="Your agent code here")
|
207 |
model_name = gr.Dropdown(
|
208 |
label="Model",
|
209 |
choices=["google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large"],
|
210 |
+
value="google/flan-t5-base"
|
211 |
)
|
212 |
+
use_cache = gr.Checkbox(label="Use Answer Cache", value=False)
|
|
|
213 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
214 |
|
215 |
with gr.Column():
|
|
|
222 |
|
223 |
run_button.click(
|
224 |
fn=run_evaluation,
|
225 |
+
inputs=[username, agent_code, model_name, use_cache],
|
226 |
outputs=[
|
227 |
result_text,
|
228 |
correct_answers,
|
|
|
237 |
|
238 |
|
239 |
if __name__ == "__main__":
|
|
|
240 |
demo = create_gradio_interface()
|
241 |
+
demo.launch(share=True)
|