Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import json
|
2 |
import re
|
3 |
import requests
|
4 |
import pandas as pd
|
@@ -6,6 +5,7 @@ import torch
|
|
6 |
import gradio as gr
|
7 |
from tqdm import tqdm
|
8 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
9 |
|
10 |
# Конфигурация
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -15,40 +15,42 @@ class GAIAExpertAgent:
|
|
15 |
def __init__(self, model_name: str = MODEL_NAME):
|
16 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
print(f"⚡ Инициализация агента на {self.device.upper()}")
|
|
|
|
|
18 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
20 |
model_name,
|
21 |
device_map="auto",
|
22 |
-
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32
|
|
|
23 |
).eval()
|
24 |
print("✅ Агент готов")
|
25 |
|
26 |
def __call__(self, question: str, task_id: str = None) -> str:
|
27 |
try:
|
28 |
-
#
|
29 |
-
if "reverse" in question.lower() or "rewsna" in question:
|
30 |
-
return json.dumps({"final_answer": question[::-1][:100]})
|
31 |
-
if "how many" in question.lower() or "сколько" in question.lower():
|
32 |
-
numbers = re.findall(r'\d+', question)
|
33 |
-
result = str(sum(map(int, numbers))) if numbers else "42"
|
34 |
-
return json.dumps({"final_answer": result})
|
35 |
-
|
36 |
-
# Стандартная обработка
|
37 |
inputs = self.tokenizer(
|
38 |
-
f"
|
39 |
return_tensors="pt",
|
40 |
-
max_length=
|
41 |
truncation=True
|
42 |
).to(self.device)
|
43 |
|
|
|
44 |
outputs = self.model.generate(
|
45 |
**inputs,
|
46 |
-
max_new_tokens=
|
47 |
-
num_beams=
|
48 |
-
early_stopping=True
|
|
|
49 |
)
|
50 |
|
51 |
answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
52 |
return json.dumps({"final_answer": answer.strip()})
|
53 |
|
54 |
except Exception as e:
|
@@ -60,8 +62,9 @@ class EvaluationRunner:
|
|
60 |
self.api_url = api_url
|
61 |
self.questions_url = f"{api_url}/questions"
|
62 |
self.submit_url = f"{api_url}/submit"
|
|
|
63 |
|
64 |
-
def run_evaluation(self, agent, username: str, agent_code: str):
|
65 |
# Получение вопросов
|
66 |
questions = self._fetch_questions()
|
67 |
if not isinstance(questions, list):
|
@@ -70,7 +73,7 @@ class EvaluationRunner:
|
|
70 |
# Обработка вопросов
|
71 |
results = []
|
72 |
answers = []
|
73 |
-
for q in
|
74 |
try:
|
75 |
json_response = agent(q["question"], q["task_id"])
|
76 |
response_obj = json.loads(json_response)
|
@@ -78,13 +81,13 @@ class EvaluationRunner:
|
|
78 |
|
79 |
answers.append({
|
80 |
"task_id": q["task_id"],
|
81 |
-
"submitted_answer": str(answer)[:
|
82 |
})
|
83 |
|
84 |
results.append({
|
85 |
"Task ID": q["task_id"],
|
86 |
-
"Question": q["question"]
|
87 |
-
"Answer": str(answer)
|
88 |
})
|
89 |
except Exception as e:
|
90 |
results.append({
|
@@ -99,56 +102,88 @@ class EvaluationRunner:
|
|
99 |
|
100 |
def _fetch_questions(self):
|
101 |
try:
|
102 |
-
response =
|
|
|
|
|
|
|
|
|
103 |
response.raise_for_status()
|
104 |
return response.json()
|
105 |
except Exception as e:
|
106 |
-
return f"
|
107 |
|
108 |
def _submit_answers(self, username: str, agent_code: str, answers: list):
|
109 |
try:
|
110 |
-
response =
|
111 |
self.submit_url,
|
112 |
json={
|
113 |
"username": username.strip(),
|
114 |
"agent_code": agent_code.strip(),
|
115 |
"answers": answers
|
116 |
},
|
117 |
-
timeout=
|
118 |
)
|
119 |
response.raise_for_status()
|
120 |
-
return response.json().get("message", "
|
121 |
except Exception as e:
|
122 |
-
return f"
|
123 |
|
124 |
|
125 |
-
|
|
|
|
|
126 |
agent = GAIAExpertAgent()
|
|
|
|
|
127 |
runner = EvaluationRunner()
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
|
131 |
-
#
|
132 |
-
with gr.Blocks(title="GAIA Agent") as demo:
|
133 |
-
gr.Markdown("# 🧠 GAIA Agent
|
|
|
134 |
|
135 |
with gr.Row():
|
136 |
-
with gr.Column():
|
|
|
137 |
username = gr.Textbox(label="HF Username", value="yoshizen")
|
138 |
agent_code = gr.Textbox(label="Agent Code", value="https://huggingface.co/spaces/yoshizen/FinalTest")
|
139 |
-
run_btn = gr.Button("
|
140 |
|
141 |
-
with gr.Column():
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
run_btn.click(
|
148 |
fn=run_evaluation,
|
149 |
inputs=[username, agent_code],
|
150 |
-
outputs=[result_output, correct_output, total_output, results_table]
|
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
import requests
|
3 |
import pandas as pd
|
|
|
5 |
import gradio as gr
|
6 |
from tqdm import tqdm
|
7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
+
import json # Добавлен отсутствующий импорт
|
9 |
|
10 |
# Конфигурация
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
15 |
def __init__(self, model_name: str = MODEL_NAME):
|
16 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
print(f"⚡ Инициализация агента на {self.device.upper()}")
|
18 |
+
|
19 |
+
# Оптимизация загрузки модели
|
20 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
22 |
model_name,
|
23 |
device_map="auto",
|
24 |
+
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
|
25 |
+
low_cpu_mem_usage=True # Снижение потребления CPU памяти
|
26 |
).eval()
|
27 |
print("✅ Агент готов")
|
28 |
|
29 |
def __call__(self, question: str, task_id: str = None) -> str:
|
30 |
try:
|
31 |
+
# Убраны жесткие эвристики - они мешают реальным задачам GAIA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
inputs = self.tokenizer(
|
33 |
+
f"Solve step-by-step: {question}\nFinal Answer:",
|
34 |
return_tensors="pt",
|
35 |
+
max_length=512, # Увеличен контекст
|
36 |
truncation=True
|
37 |
).to(self.device)
|
38 |
|
39 |
+
# Улучшена генерация
|
40 |
outputs = self.model.generate(
|
41 |
**inputs,
|
42 |
+
max_new_tokens=256, # Увеличен лимит для сложных ответов
|
43 |
+
num_beams=5, # Улучшено качество поиска
|
44 |
+
early_stopping=True,
|
45 |
+
repetition_penalty=2.0 # Предотвращение циклов
|
46 |
)
|
47 |
|
48 |
answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
+
|
50 |
+
# Очистка памяти CUDA
|
51 |
+
if "cuda" in self.device:
|
52 |
+
torch.cuda.empty_cache()
|
53 |
+
|
54 |
return json.dumps({"final_answer": answer.strip()})
|
55 |
|
56 |
except Exception as e:
|
|
|
62 |
self.api_url = api_url
|
63 |
self.questions_url = f"{api_url}/questions"
|
64 |
self.submit_url = f"{api_url}/submit"
|
65 |
+
self.session = requests.Session() # Сессия для повторных запросов
|
66 |
|
67 |
+
def run_evaluation(self, agent, username: str, agent_code: str, progress=tqdm):
|
68 |
# Получение вопросов
|
69 |
questions = self._fetch_questions()
|
70 |
if not isinstance(questions, list):
|
|
|
73 |
# Обработка вопросов
|
74 |
results = []
|
75 |
answers = []
|
76 |
+
for q in progress(questions, desc="Processing GAIA tasks"):
|
77 |
try:
|
78 |
json_response = agent(q["question"], q["task_id"])
|
79 |
response_obj = json.loads(json_response)
|
|
|
81 |
|
82 |
answers.append({
|
83 |
"task_id": q["task_id"],
|
84 |
+
"submitted_answer": str(answer)[:500] # Увеличен лимит
|
85 |
})
|
86 |
|
87 |
results.append({
|
88 |
"Task ID": q["task_id"],
|
89 |
+
"Question": q["question"],
|
90 |
+
"Answer": str(answer)
|
91 |
})
|
92 |
except Exception as e:
|
93 |
results.append({
|
|
|
102 |
|
103 |
def _fetch_questions(self):
|
104 |
try:
|
105 |
+
response = self.session.get(
|
106 |
+
self.questions_url,
|
107 |
+
timeout=60, # Увеличен таймаут
|
108 |
+
headers={"Accept": "application/json"}
|
109 |
+
)
|
110 |
response.raise_for_status()
|
111 |
return response.json()
|
112 |
except Exception as e:
|
113 |
+
return f"Ошибка получения вопросов: {str(e)}"
|
114 |
|
115 |
def _submit_answers(self, username: str, agent_code: str, answers: list):
|
116 |
try:
|
117 |
+
response = self.session.post(
|
118 |
self.submit_url,
|
119 |
json={
|
120 |
"username": username.strip(),
|
121 |
"agent_code": agent_code.strip(),
|
122 |
"answers": answers
|
123 |
},
|
124 |
+
timeout=120 # Увеличен таймаут
|
125 |
)
|
126 |
response.raise_for_status()
|
127 |
+
return response.json().get("message", "Ответы успешно отправлены")
|
128 |
except Exception as e:
|
129 |
+
return f"Ошибка отправки: {str(e)}"
|
130 |
|
131 |
|
132 |
+
# Важно: Инициализация агента при запуске, а не при импорте
|
133 |
+
def run_evaluation(username: str, agent_code: str, progress=gr.Progress()):
|
134 |
+
progress(0, desc="Инициализация модели...")
|
135 |
agent = GAIAExpertAgent()
|
136 |
+
|
137 |
+
progress(0, desc="Запуск оценки...")
|
138 |
runner = EvaluationRunner()
|
139 |
+
|
140 |
+
# Обертка tqdm для Gradio Progress
|
141 |
+
class ProgressWrapper:
|
142 |
+
def __call__(self, iterable, desc=""):
|
143 |
+
progress(0, desc=desc)
|
144 |
+
for i, x in enumerate(iterable):
|
145 |
+
progress(i / len(iterable))
|
146 |
+
yield x
|
147 |
+
|
148 |
+
return runner.run_evaluation(agent, username, agent_code, progress=ProgressWrapper())
|
149 |
|
150 |
|
151 |
+
# Оптимизированный интерфейс Gradio
|
152 |
+
with gr.Blocks(title="GAIA Agent", theme=gr.themes.Soft()) as demo:
|
153 |
+
gr.Markdown("""# 🧠 GAIA Mastermind Agent
|
154 |
+
## *Многошаговое решение сложных задач*""")
|
155 |
|
156 |
with gr.Row():
|
157 |
+
with gr.Column(scale=1):
|
158 |
+
gr.Markdown("### 🔐 Авторизация")
|
159 |
username = gr.Textbox(label="HF Username", value="yoshizen")
|
160 |
agent_code = gr.Textbox(label="Agent Code", value="https://huggingface.co/spaces/yoshizen/FinalTest")
|
161 |
+
run_btn = gr.Button("Запустить оценку", variant="primary")
|
162 |
|
163 |
+
with gr.Column(scale=2):
|
164 |
+
gr.Markdown("### 📊 Результаты")
|
165 |
+
with gr.Row():
|
166 |
+
result_output = gr.Textbox(label="Статус")
|
167 |
+
correct_output = gr.Number(label="Правильные ответы")
|
168 |
+
total_output = gr.Number(label="Всего вопросов")
|
169 |
+
results_table = gr.Dataframe(
|
170 |
+
label="Детализация ответов",
|
171 |
+
interactive=True,
|
172 |
+
wrap=True,
|
173 |
+
overflow_row_behaviour="paginate",
|
174 |
+
height=500
|
175 |
+
)
|
176 |
|
177 |
run_btn.click(
|
178 |
fn=run_evaluation,
|
179 |
inputs=[username, agent_code],
|
180 |
+
outputs=[result_output, correct_output, total_output, results_table],
|
181 |
+
concurrency_limit=1 # Защита от перегрузки
|
182 |
)
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
+
demo.queue(max_size=10).launch(
|
186 |
+
server_name="0.0.0.0",
|
187 |
+
server_port=7860,
|
188 |
+
show_error=True
|
189 |
+
)
|