Update gaia_agent.py
Browse files- gaia_agent.py +166 -509
gaia_agent.py
CHANGED
@@ -1,498 +1,225 @@
|
|
1 |
"""
|
2 |
-
|
3 |
"""
|
4 |
|
5 |
import os
|
6 |
-
import re
|
7 |
-
import math
|
8 |
import json
|
9 |
-
import
|
10 |
-
import requests
|
11 |
-
from typing import List, Dict, Any, Optional, Union, Tuple, Callable
|
12 |
import torch
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class EnhancedGAIAAgent:
|
16 |
"""
|
17 |
-
|
18 |
-
with LLM-powered flexibility and strict output formatting.
|
19 |
"""
|
20 |
|
21 |
-
def __init__(self, model_name="google/flan-t5-
|
22 |
-
"""
|
23 |
-
|
24 |
-
print(f"EnhancedGAIAAgent initializing with model: {model_name}")
|
25 |
-
|
26 |
-
# Initialize LLM components
|
27 |
-
self.device = device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
-
self._initialize_llm()
|
29 |
-
|
30 |
-
# Register specialized handlers
|
31 |
-
self.handlers = {
|
32 |
-
'calculation': self._handle_calculation,
|
33 |
-
'date_time': self._handle_date_time,
|
34 |
-
'list': self._handle_list_question,
|
35 |
-
'visual': self._handle_visual_question,
|
36 |
-
'factual': self._handle_factual_question,
|
37 |
-
'general': self._handle_general_question
|
38 |
-
}
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
'general': "Provide a specific, concise answer: {question}"
|
49 |
-
}
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
self.llm_available = True
|
60 |
-
print("LLM initialized successfully")
|
61 |
except Exception as e:
|
62 |
-
print(f"Error
|
63 |
-
self.llm_available = False
|
64 |
-
self.tokenizer = None
|
65 |
-
self.model = None
|
66 |
|
67 |
-
def
|
68 |
"""
|
69 |
-
|
70 |
|
71 |
Args:
|
72 |
-
question:
|
73 |
-
task_id: Optional task ID for the GAIA benchmark
|
74 |
|
75 |
Returns:
|
76 |
-
|
77 |
"""
|
78 |
-
|
79 |
-
|
80 |
-
# Determine question type
|
81 |
-
question_type = self._classify_question(question)
|
82 |
-
print(f"Classified as: {question_type}")
|
83 |
-
|
84 |
-
# Use the appropriate handler to get the answer
|
85 |
-
model_answer = self.handlers[question_type](question)
|
86 |
-
|
87 |
-
# Ensure answer is concise and specific
|
88 |
-
model_answer = self._ensure_concise_answer(model_answer, question_type)
|
89 |
-
|
90 |
-
# FIXED: Return JSON with final_answer key
|
91 |
-
response = {
|
92 |
-
"final_answer": model_answer
|
93 |
-
}
|
94 |
-
|
95 |
-
return json.dumps(response)
|
96 |
-
|
97 |
-
def _generate_reasoning_trace(self, question: str, question_type: str) -> str:
|
98 |
-
"""Generate a reasoning trace for the question if appropriate."""
|
99 |
-
# For calculation and reasoning questions, provide a trace
|
100 |
-
if question_type == 'calculation':
|
101 |
-
# Extract numbers and operation from the question
|
102 |
-
numbers = re.findall(r'\d+', question)
|
103 |
-
|
104 |
-
if len(numbers) >= 2:
|
105 |
-
if re.search(r'(sum|add|plus|\+)', question.lower()):
|
106 |
-
return f"To find the sum, I add the numbers: {' + '.join(numbers)} = {sum(int(num) for num in numbers)}"
|
107 |
-
elif re.search(r'(difference|subtract|minus|\-)', question.lower()) and len(numbers) >= 2:
|
108 |
-
return f"To find the difference, I subtract: {numbers[0]} - {numbers[1]} = {int(numbers[0]) - int(numbers[1])}"
|
109 |
-
elif re.search(r'(product|multiply|times|\*)', question.lower()) and len(numbers) >= 2:
|
110 |
-
return f"To find the product, I multiply: {numbers[0]} × {numbers[1]} = {int(numbers[0]) * int(numbers[1])}"
|
111 |
-
elif re.search(r'(divide|division|\/)', question.lower()) and len(numbers) >= 2:
|
112 |
-
if int(numbers[1]) != 0:
|
113 |
-
return f"To find the quotient, I divide: {numbers[0]} ÷ {numbers[1]} = {int(numbers[0]) / int(numbers[1])}"
|
114 |
-
|
115 |
-
# If we can't generate a specific trace, use a generic one
|
116 |
-
return "I need to identify the numbers and operations in the question, then perform the calculation step by step."
|
117 |
-
|
118 |
-
elif question_type in ['factual', 'general'] and self.llm_available:
|
119 |
-
# For factual and general questions, use LLM to generate a trace
|
120 |
-
try:
|
121 |
-
prompt = f"Explain your reasoning for answering this question: {question}"
|
122 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True).to(self.device)
|
123 |
-
outputs = self.model.generate(
|
124 |
-
inputs["input_ids"],
|
125 |
-
max_length=150,
|
126 |
-
min_length=20,
|
127 |
-
temperature=0.3,
|
128 |
-
top_p=0.95,
|
129 |
-
do_sample=True,
|
130 |
-
num_return_sequences=1
|
131 |
-
)
|
132 |
-
|
133 |
-
trace = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
134 |
-
return trace[:200] # Limit trace length
|
135 |
-
except:
|
136 |
-
pass
|
137 |
-
|
138 |
-
# For other question types or if LLM fails, provide a minimal trace
|
139 |
-
return ""
|
140 |
-
|
141 |
-
def _classify_question(self, question: str) -> str:
|
142 |
-
"""Determine the type of question for specialized handling."""
|
143 |
question_lower = question.lower()
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
return 'date_time'
|
152 |
-
|
153 |
-
# Check for list questions
|
154 |
-
elif self._is_list_question(question):
|
155 |
-
return 'list'
|
156 |
-
|
157 |
-
# Check for visual/image questions
|
158 |
-
elif self._is_visual_question(question):
|
159 |
-
return 'visual'
|
160 |
-
|
161 |
-
# Check for factual questions
|
162 |
-
elif self._is_factual_question(question):
|
163 |
-
return 'factual'
|
164 |
-
|
165 |
-
# Default to general knowledge
|
166 |
else:
|
167 |
-
return
|
168 |
-
|
169 |
-
def _is_calculation_question(self, question: str) -> bool:
|
170 |
-
"""Check if the question requires mathematical calculation."""
|
171 |
-
calculation_patterns = [
|
172 |
-
r'\d+\s*[\+\-\*\/]\s*\d+', # Basic operations: 5+3, 10-2, etc.
|
173 |
-
r'(sum|add|plus|subtract|minus|multiply|divide|product|quotient)',
|
174 |
-
r'(calculate|compute|find|what is|how much|result)',
|
175 |
-
r'(square root|power|exponent|factorial|percentage|average|mean)'
|
176 |
-
]
|
177 |
-
|
178 |
-
return any(re.search(pattern, question.lower()) for pattern in calculation_patterns)
|
179 |
-
|
180 |
-
def _is_date_time_question(self, question: str) -> bool:
|
181 |
-
"""Check if the question is about date or time."""
|
182 |
-
date_time_patterns = [
|
183 |
-
r'(date|time|day|month|year|hour|minute|second)',
|
184 |
-
r'(today|tomorrow|yesterday|current|now)',
|
185 |
-
r'(calendar|schedule|appointment)',
|
186 |
-
r'(when|how long|duration|period)'
|
187 |
-
]
|
188 |
-
|
189 |
-
return any(re.search(pattern, question.lower()) for pattern in date_time_patterns)
|
190 |
-
|
191 |
-
def _is_list_question(self, question: str) -> bool:
|
192 |
-
"""Check if the question requires a list as an answer."""
|
193 |
-
list_patterns = [
|
194 |
-
r'(list|enumerate|items|elements)',
|
195 |
-
r'comma.separated',
|
196 |
-
r'(all|every|each).*(of|in)',
|
197 |
-
r'(provide|give).*(list)'
|
198 |
-
]
|
199 |
-
|
200 |
-
return any(re.search(pattern, question.lower()) for pattern in list_patterns)
|
201 |
|
202 |
-
def
|
203 |
-
"""
|
204 |
-
|
205 |
-
r'(image|picture|photo|graph|chart|diagram|figure)',
|
206 |
-
r'(show|display|illustrate|depict)',
|
207 |
-
r'(look|see|observe|view)',
|
208 |
-
r'(visual|visually)'
|
209 |
-
]
|
210 |
-
|
211 |
-
return any(re.search(pattern, question.lower()) for pattern in visual_patterns)
|
212 |
-
|
213 |
-
def _is_factual_question(self, question: str) -> bool:
|
214 |
-
"""Check if the question is asking for a factual answer."""
|
215 |
-
factual_patterns = [
|
216 |
-
r'^(who|what|where|when|why|how)',
|
217 |
-
r'(name|identify|specify|tell me)',
|
218 |
-
r'(capital|president|inventor|author|creator|founder)',
|
219 |
-
r'(located|situated|found|discovered)'
|
220 |
-
]
|
221 |
-
|
222 |
-
return any(re.search(pattern, question.lower()) for pattern in factual_patterns)
|
223 |
-
|
224 |
-
def _handle_calculation(self, question: str) -> str:
|
225 |
-
"""Handle mathematical calculation questions with precise answers."""
|
226 |
-
# Extract numbers and operation from the question
|
227 |
-
numbers = re.findall(r'\d+', question)
|
228 |
-
|
229 |
-
# Try to extract a mathematical expression
|
230 |
-
expression_match = re.search(r'\d+\s*[\+\-\*\/]\s*\d+', question)
|
231 |
-
|
232 |
-
# Determine the operation
|
233 |
-
if re.search(r'(sum|add|plus|\+)', question.lower()) and len(numbers) >= 2:
|
234 |
-
result = sum(int(num) for num in numbers)
|
235 |
-
return str(result)
|
236 |
-
|
237 |
-
elif re.search(r'(difference|subtract|minus|\-)', question.lower()) and len(numbers) >= 2:
|
238 |
-
result = int(numbers[0]) - int(numbers[1])
|
239 |
-
return str(result)
|
240 |
-
|
241 |
-
elif re.search(r'(product|multiply|times|\*)', question.lower()) and len(numbers) >= 2:
|
242 |
-
result = int(numbers[0]) * int(numbers[1])
|
243 |
-
return str(result)
|
244 |
-
|
245 |
-
elif re.search(r'(divide|division|\/)', question.lower()) and len(numbers) >= 2 and int(numbers[1]) != 0:
|
246 |
-
result = int(numbers[0]) / int(numbers[1])
|
247 |
-
return str(result)
|
248 |
-
|
249 |
-
# For more complex calculations, try to evaluate the expression
|
250 |
-
elif expression_match:
|
251 |
-
try:
|
252 |
-
# Extract and clean the expression
|
253 |
-
expr = expression_match.group(0)
|
254 |
-
expr = expr.replace('plus', '+').replace('minus', '-')
|
255 |
-
expr = expr.replace('times', '*').replace('divided by', '/')
|
256 |
-
|
257 |
-
# Evaluate the expression
|
258 |
-
result = eval(expr)
|
259 |
-
return str(result)
|
260 |
-
except:
|
261 |
-
pass
|
262 |
-
|
263 |
-
# If rule-based approach fails, use LLM with math-specific prompt
|
264 |
-
return self._generate_llm_response(question, 'calculation')
|
265 |
-
|
266 |
-
def _handle_date_time(self, question: str) -> str:
|
267 |
-
"""Handle date and time related questions."""
|
268 |
-
now = datetime.datetime.now()
|
269 |
-
question_lower = question.lower()
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
elif re.search(r'(time now|current time|what time is it)', question_lower):
|
275 |
-
return now.strftime("%H:%M:%S")
|
276 |
-
|
277 |
-
elif re.search(r'(day of the week|what day of the week)', question_lower):
|
278 |
-
return now.strftime("%A")
|
279 |
-
|
280 |
-
elif re.search(r'(month|current month|what month is it)', question_lower):
|
281 |
-
return now.strftime("%B")
|
282 |
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
-
|
287 |
-
return self._generate_llm_response(question, 'date_time')
|
288 |
|
289 |
-
def
|
290 |
-
"""
|
291 |
-
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
elif re.search(r'(vegetable|vegetables)', question_lower):
|
298 |
-
return "carrot, broccoli, spinach, potato, onion"
|
299 |
-
|
300 |
-
elif re.search(r'(country|countries)', question_lower):
|
301 |
-
return "USA, China, India, Russia, Brazil"
|
302 |
-
|
303 |
-
elif re.search(r'(capital|capitals)', question_lower):
|
304 |
-
return "Washington D.C., Beijing, New Delhi, Moscow, Brasilia"
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
#
|
310 |
-
|
311 |
-
|
312 |
-
def _handle_visual_question(self, question: str) -> str:
|
313 |
-
"""Handle questions about images or visual content."""
|
314 |
-
# Extract key terms from the question to customize the response
|
315 |
-
key_terms = re.findall(r'[a-zA-Z]{4,}', question)
|
316 |
-
key_term = key_terms[0].lower() if key_terms else "content"
|
317 |
-
|
318 |
-
# Create a contextually relevant placeholder response
|
319 |
-
if "graph" in question.lower() or "chart" in question.lower():
|
320 |
-
return f"The {key_term} graph shows an upward trend with significant data points highlighting the key metrics."
|
321 |
-
|
322 |
-
elif "diagram" in question.lower():
|
323 |
-
return f"The diagram illustrates the structure and components of the {key_term}, showing how the different parts interact."
|
324 |
|
325 |
-
|
326 |
-
|
|
|
|
|
327 |
|
328 |
-
#
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
"""Handle factual questions with specific answers."""
|
333 |
-
question_lower = question.lower()
|
334 |
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
338 |
|
339 |
-
|
340 |
-
|
341 |
|
342 |
-
|
343 |
-
|
|
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
return self._generate_llm_response(question, 'factual')
|
350 |
-
|
351 |
-
def _handle_general_question(self, question: str) -> str:
|
352 |
-
"""Handle general knowledge questions."""
|
353 |
-
# Use LLM for general questions
|
354 |
-
return self._generate_llm_response(question, 'general')
|
355 |
-
|
356 |
-
def _generate_llm_response(self, question: str, question_type: str) -> str:
|
357 |
-
"""Generate a response using the language model."""
|
358 |
-
if not self.llm_available:
|
359 |
-
return self._fallback_response(question, question_type)
|
360 |
-
|
361 |
-
try:
|
362 |
-
# Get the appropriate prompt template
|
363 |
-
template = self.prompt_templates.get(question_type, self.prompt_templates['general'])
|
364 |
-
prompt = template.format(question=question)
|
365 |
-
|
366 |
-
# Generate response
|
367 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True).to(self.device)
|
368 |
-
outputs = self.model.generate(
|
369 |
-
inputs["input_ids"],
|
370 |
-
max_length=150,
|
371 |
-
min_length=10,
|
372 |
-
temperature=0.3,
|
373 |
-
top_p=0.95,
|
374 |
-
do_sample=True,
|
375 |
-
num_return_sequences=1
|
376 |
-
)
|
377 |
|
378 |
-
|
379 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
380 |
-
response = self._clean_response(response)
|
381 |
|
382 |
-
return response
|
383 |
except Exception as e:
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
def _clean_response(self, response: str) -> str:
|
388 |
-
"""Clean up the model's response."""
|
389 |
-
# Remove any prefixes like "Answer:" or "Response:"
|
390 |
-
for prefix in ["Answer:", "Response:", "A:", "The answer is:", "I think", "I believe"]:
|
391 |
-
if response.startswith(prefix):
|
392 |
-
response = response[len(prefix):].strip()
|
393 |
-
|
394 |
-
# Remove first-person references
|
395 |
-
response = re.sub(r'^I would say that\s+', '', response)
|
396 |
-
response = re.sub(r'^In my opinion,\s+', '', response)
|
397 |
-
|
398 |
-
# Ensure the response is not too short
|
399 |
-
if len(response) < 5:
|
400 |
-
return "Unable to provide a specific answer to this question."
|
401 |
-
|
402 |
-
return response
|
403 |
-
|
404 |
-
def _ensure_concise_answer(self, answer: str, question_type: str) -> str:
|
405 |
-
"""Ensure the answer is concise and specific."""
|
406 |
-
# Limit answer length based on question type
|
407 |
-
max_lengths = {
|
408 |
-
'calculation': 20,
|
409 |
-
'date_time': 30,
|
410 |
-
'list': 100,
|
411 |
-
'visual': 150,
|
412 |
-
'factual': 100,
|
413 |
-
'general': 150
|
414 |
-
}
|
415 |
-
|
416 |
-
max_length = max_lengths.get(question_type, 100)
|
417 |
-
|
418 |
-
# Truncate if too long, but try to keep complete sentences
|
419 |
-
if len(answer) > max_length:
|
420 |
-
# Try to find the last sentence boundary before max_length
|
421 |
-
last_period = answer[:max_length].rfind('.')
|
422 |
-
if last_period > 0:
|
423 |
-
answer = answer[:last_period + 1]
|
424 |
-
else:
|
425 |
-
answer = answer[:max_length]
|
426 |
-
|
427 |
-
return answer
|
428 |
-
|
429 |
-
def _fallback_response(self, question: str, question_type: str) -> str:
|
430 |
-
"""Provide a fallback response if the model fails."""
|
431 |
-
# Fallback responses based on question type
|
432 |
-
fallbacks = {
|
433 |
-
'calculation': "42",
|
434 |
-
'date_time': "2023-01-01",
|
435 |
-
'list': "item1, item2, item3, item4, item5",
|
436 |
-
'visual': "The image shows the main subject clearly visible in the center with relevant details surrounding it.",
|
437 |
-
'factual': "This is a factual answer to your specific question.",
|
438 |
-
'general': "The answer involves multiple factors that must be considered in context."
|
439 |
-
}
|
440 |
-
|
441 |
-
return fallbacks.get(question_type, "I don't have enough information to answer this question specifically.")
|
442 |
|
443 |
|
444 |
class EvaluationRunner:
|
445 |
"""
|
446 |
-
|
447 |
-
|
448 |
"""
|
449 |
|
450 |
def __init__(self, api_url="https://agents-course-unit4-scoring.hf.space"):
|
451 |
-
"""
|
452 |
self.api_url = api_url
|
453 |
self.questions_url = f"{api_url}/questions"
|
454 |
self.submit_url = f"{api_url}/submit"
|
455 |
self.results_url = f"{api_url}/results"
|
456 |
-
self.total_questions = 0
|
457 |
self.correct_answers = 0
|
|
|
458 |
|
459 |
def run_evaluation(self,
|
460 |
agent: Any,
|
461 |
username: str,
|
462 |
-
|
463 |
"""
|
464 |
-
|
465 |
-
1.
|
466 |
-
2.
|
467 |
-
3.
|
468 |
-
4.
|
469 |
-
5. Return results
|
470 |
"""
|
471 |
-
#
|
472 |
-
self.total_questions = 0
|
473 |
-
self.correct_answers = 0
|
474 |
-
|
475 |
-
# Fetch questions
|
476 |
questions_data = self._fetch_questions()
|
477 |
-
if isinstance(questions_data, str): #
|
478 |
return questions_data, None
|
479 |
|
480 |
-
#
|
481 |
results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
|
482 |
if not answers_payload:
|
483 |
return "Agent did not produce any answers to submit.", results_log
|
484 |
|
485 |
-
#
|
486 |
-
submission_result = self._submit_answers(username,
|
487 |
-
|
488 |
-
# Try to fetch results to count correct answers
|
489 |
-
self._check_results(username)
|
490 |
|
491 |
-
#
|
492 |
return submission_result, results_log
|
493 |
|
494 |
def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
|
495 |
-
"""
|
496 |
print(f"Fetching questions from: {self.questions_url}")
|
497 |
try:
|
498 |
response = requests.get(self.questions_url, timeout=15)
|
@@ -527,7 +254,7 @@ class EvaluationRunner:
|
|
527 |
def _run_agent_on_questions(self,
|
528 |
agent: Any,
|
529 |
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
530 |
-
"""
|
531 |
results_log = []
|
532 |
answers_payload = []
|
533 |
|
@@ -541,13 +268,13 @@ class EvaluationRunner:
|
|
541 |
continue
|
542 |
|
543 |
try:
|
544 |
-
#
|
545 |
json_response = agent(question_text, task_id)
|
546 |
|
547 |
-
#
|
548 |
response_obj = json.loads(json_response)
|
549 |
|
550 |
-
#
|
551 |
submitted_answer = response_obj.get("final_answer", "")
|
552 |
|
553 |
answers_payload.append({
|
@@ -573,18 +300,19 @@ class EvaluationRunner:
|
|
573 |
|
574 |
def _submit_answers(self,
|
575 |
username: str,
|
576 |
-
|
577 |
answers_payload: List[Dict[str, Any]]) -> str:
|
578 |
-
"""
|
|
|
579 |
submission_data = {
|
580 |
"username": username.strip(),
|
581 |
-
"
|
582 |
"answers": answers_payload
|
583 |
}
|
584 |
|
585 |
print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
|
586 |
max_retries = 3
|
587 |
-
retry_delay = 5 #
|
588 |
|
589 |
for attempt in range(1, max_retries + 1):
|
590 |
try:
|
@@ -603,7 +331,7 @@ class EvaluationRunner:
|
|
603 |
max_score = result.get("max_score")
|
604 |
|
605 |
if score is not None and max_score is not None:
|
606 |
-
self.correct_answers = score #
|
607 |
return f"Evaluation complete! Score: {score}/{max_score}"
|
608 |
else:
|
609 |
print(f"Received N/A results. Waiting {retry_delay} seconds before retry...")
|
@@ -626,11 +354,11 @@ class EvaluationRunner:
|
|
626 |
else:
|
627 |
return f"Error submitting answers after {max_retries} attempts: {e}"
|
628 |
|
629 |
-
#
|
630 |
return "Submission Successful, but results are pending!"
|
631 |
|
632 |
def _check_results(self, username: str) -> None:
|
633 |
-
"""
|
634 |
try:
|
635 |
results_url = f"{self.results_url}?username={username}"
|
636 |
print(f"Checking results at: {results_url}")
|
@@ -656,15 +384,15 @@ class EvaluationRunner:
|
|
656 |
print(f"Error checking results: {e}")
|
657 |
|
658 |
def get_correct_answers_count(self) -> int:
|
659 |
-
"""
|
660 |
return self.correct_answers
|
661 |
|
662 |
def get_total_questions_count(self) -> int:
|
663 |
-
"""
|
664 |
return self.total_questions
|
665 |
|
666 |
def print_evaluation_summary(self, username: str) -> None:
|
667 |
-
"""
|
668 |
print("\n===== EVALUATION SUMMARY =====")
|
669 |
print(f"User: {username}")
|
670 |
print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
|
@@ -672,74 +400,3 @@ class EvaluationRunner:
|
|
672 |
print(f"Total Questions: {self.total_questions}")
|
673 |
print(f"Accuracy: {(self.correct_answers / self.total_questions * 100) if self.total_questions > 0 else 0:.1f}%")
|
674 |
print("=============================\n")
|
675 |
-
|
676 |
-
|
677 |
-
# Example usage and test cases
|
678 |
-
def test_agent():
|
679 |
-
"""Test the agent with example questions."""
|
680 |
-
agent = EnhancedGAIAAgent()
|
681 |
-
|
682 |
-
test_questions = [
|
683 |
-
# Calculation questions
|
684 |
-
"What is 25 + 17?",
|
685 |
-
"Calculate the product of 8 and 9",
|
686 |
-
|
687 |
-
# Date/time questions
|
688 |
-
"What is today's date?",
|
689 |
-
"What day of the week is it?",
|
690 |
-
|
691 |
-
# List questions
|
692 |
-
"List five fruits",
|
693 |
-
"What are the planets in our solar system?",
|
694 |
-
|
695 |
-
# Visual questions
|
696 |
-
"What does the image show?",
|
697 |
-
"Describe the chart in the image",
|
698 |
-
|
699 |
-
# Factual questions
|
700 |
-
"Who was the first president of the United States?",
|
701 |
-
"What is the capital of France?",
|
702 |
-
"How does photosynthesis work?",
|
703 |
-
|
704 |
-
# General questions
|
705 |
-
"Why is the sky blue?",
|
706 |
-
"What are the implications of quantum mechanics?"
|
707 |
-
]
|
708 |
-
|
709 |
-
print("\n=== AGENT TEST RESULTS ===")
|
710 |
-
correct_count = 0
|
711 |
-
total_count = len(test_questions)
|
712 |
-
|
713 |
-
for question in test_questions:
|
714 |
-
# Generate a mock task_id for testing
|
715 |
-
task_id = f"test_{hash(question) % 10000}"
|
716 |
-
|
717 |
-
# Get JSON response with final_answer
|
718 |
-
json_response = agent(question, task_id)
|
719 |
-
|
720 |
-
print(f"\nQ: {question}")
|
721 |
-
print(f"Response: {json_response}")
|
722 |
-
|
723 |
-
# Parse and print the final_answer for clarity
|
724 |
-
try:
|
725 |
-
response_obj = json.loads(json_response)
|
726 |
-
final_answer = response_obj.get('final_answer', '')
|
727 |
-
print(f"Final Answer: {final_answer}")
|
728 |
-
|
729 |
-
# For testing purposes, simulate correct answers
|
730 |
-
if len(final_answer) > 0 and not final_answer.startswith("AGENT ERROR"):
|
731 |
-
correct_count += 1
|
732 |
-
except:
|
733 |
-
print("Error parsing JSON response")
|
734 |
-
|
735 |
-
# Print test summary with correct answer count
|
736 |
-
print("\n===== TEST SUMMARY =====")
|
737 |
-
print(f"Correct Answers: {correct_count}/{total_count}")
|
738 |
-
print(f"Accuracy: {(correct_count / total_count * 100):.1f}%")
|
739 |
-
print("=======================\n")
|
740 |
-
|
741 |
-
return "Test completed successfully"
|
742 |
-
|
743 |
-
|
744 |
-
if __name__ == "__main__":
|
745 |
-
test_agent()
|
|
|
1 |
"""
|
2 |
+
Улучшенный GAIA Agent с поддержкой кэширования ответов
|
3 |
"""
|
4 |
|
5 |
import os
|
|
|
|
|
6 |
import json
|
7 |
+
import time
|
|
|
|
|
8 |
import torch
|
9 |
+
import requests
|
10 |
+
from typing import List, Dict, Any, Optional, Union
|
11 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
12 |
+
|
13 |
+
# Константы
|
14 |
+
CACHE_FILE = "gaia_answers_cache.json"
|
15 |
|
16 |
class EnhancedGAIAAgent:
|
17 |
"""
|
18 |
+
Улучшенный агент для Hugging Face GAIA с поддержкой кэширования ответов
|
|
|
19 |
"""
|
20 |
|
21 |
+
def __init__(self, model_name="google/flan-t5-small", use_cache=True):
|
22 |
+
"""
|
23 |
+
Инициализация агента с моделью и кэшем
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
Args:
|
26 |
+
model_name: Название модели для загрузки
|
27 |
+
use_cache: Использовать ли кэширование ответов
|
28 |
+
"""
|
29 |
+
print(f"Initializing EnhancedGAIAAgent with model: {model_name}")
|
30 |
+
self.model_name = model_name
|
31 |
+
self.use_cache = use_cache
|
32 |
+
self.cache = self._load_cache() if use_cache else {}
|
|
|
|
|
33 |
|
34 |
+
# Загружаем модель и токенизатор
|
35 |
+
print("Loading tokenizer...")
|
36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
+
print("Loading model...")
|
38 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
39 |
+
print("Model and tokenizer loaded successfully")
|
40 |
+
|
41 |
+
def _load_cache(self) -> Dict[str, str]:
|
42 |
+
"""
|
43 |
+
Загружает кэш ответов из файла
|
44 |
|
45 |
+
Returns:
|
46 |
+
Dict[str, str]: Словарь с кэшированными ответами
|
47 |
+
"""
|
48 |
+
if os.path.exists(CACHE_FILE):
|
49 |
+
try:
|
50 |
+
with open(CACHE_FILE, 'r', encoding='utf-8') as f:
|
51 |
+
print(f"Loading cache from {CACHE_FILE}")
|
52 |
+
return json.load(f)
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error loading cache: {e}")
|
55 |
+
return {}
|
56 |
+
else:
|
57 |
+
print(f"Cache file {CACHE_FILE} not found, creating new cache")
|
58 |
+
return {}
|
59 |
+
|
60 |
+
def _save_cache(self) -> None:
|
61 |
+
"""
|
62 |
+
Сохраняет кэш ответов в файл
|
63 |
+
"""
|
64 |
try:
|
65 |
+
with open(CACHE_FILE, 'w', encoding='utf-8') as f:
|
66 |
+
json.dump(self.cache, f, ensure_ascii=False, indent=2)
|
67 |
+
print(f"Cache saved to {CACHE_FILE}")
|
|
|
|
|
68 |
except Exception as e:
|
69 |
+
print(f"Error saving cache: {e}")
|
|
|
|
|
|
|
70 |
|
71 |
+
def _classify_question(self, question: str) -> str:
|
72 |
"""
|
73 |
+
Классифицирует вопрос по типу для лучшего форматирования ответа
|
74 |
|
75 |
Args:
|
76 |
+
question: Текст вопроса
|
|
|
77 |
|
78 |
Returns:
|
79 |
+
str: Тип вопроса (factual, calculation, list, date_time, etc.)
|
80 |
"""
|
81 |
+
# Простая эвристическая классификация
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
question_lower = question.lower()
|
83 |
|
84 |
+
if any(word in question_lower for word in ["calculate", "sum", "product", "divide", "multiply", "add", "subtract", "how many"]):
|
85 |
+
return "calculation"
|
86 |
+
elif any(word in question_lower for word in ["list", "enumerate", "items", "elements"]):
|
87 |
+
return "list"
|
88 |
+
elif any(word in question_lower for word in ["date", "time", "day", "month", "year", "when"]):
|
89 |
+
return "date_time"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
+
return "factual"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
def _format_answer(self, raw_answer: str, question_type: str) -> str:
|
94 |
+
"""
|
95 |
+
Форматирует ответ в соответствии с типом вопроса
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
Args:
|
98 |
+
raw_answer: Необработанный ответ от модели
|
99 |
+
question_type: Тип вопроса
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
Returns:
|
102 |
+
str: Отформатированный ответ
|
103 |
+
"""
|
104 |
+
# Удаляем лишние пробелы и переносы строк
|
105 |
+
answer = raw_answer.strip()
|
106 |
+
|
107 |
+
# Удаляем префиксы, которые часто добавляет модель
|
108 |
+
prefixes = ["Answer:", "The answer is:", "I think", "I believe", "According to", "Based on"]
|
109 |
+
for prefix in prefixes:
|
110 |
+
if answer.startswith(prefix):
|
111 |
+
answer = answer[len(prefix):].strip()
|
112 |
+
|
113 |
+
# Специфическое форматирование в зависимости от типа вопроса
|
114 |
+
if question_type == "calculation":
|
115 |
+
# Для числовых ответов удаляем лишний текст
|
116 |
+
# Оставляем только числа, если они есть
|
117 |
+
import re
|
118 |
+
numbers = re.findall(r'-?\d+\.?\d*', answer)
|
119 |
+
if numbers:
|
120 |
+
answer = numbers[0]
|
121 |
+
elif question_type == "list":
|
122 |
+
# Для списков убеждаемся, что элементы разделены запятыми
|
123 |
+
if "," not in answer and " " in answer:
|
124 |
+
items = [item.strip() for item in answer.split() if item.strip()]
|
125 |
+
answer = ", ".join(items)
|
126 |
|
127 |
+
return answer
|
|
|
128 |
|
129 |
+
def __call__(self, question: str, task_id: Optional[str] = None) -> str:
|
130 |
+
"""
|
131 |
+
Обрабатывает вопрос и возвращает ответ
|
132 |
|
133 |
+
Args:
|
134 |
+
question: Текст вопроса
|
135 |
+
task_id: Идентификатор задачи (опционально)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
Returns:
|
138 |
+
str: Ответ в формате JSON с ключом final_answer
|
139 |
+
"""
|
140 |
+
# Создаем ключ для кэша (используем task_id, если доступен)
|
141 |
+
cache_key = task_id if task_id else question
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# Проверяем наличие ответа в кэше
|
144 |
+
if self.use_cache and cache_key in self.cache:
|
145 |
+
print(f"Cache hit for question: {question[:50]}...")
|
146 |
+
return self.cache[cache_key]
|
147 |
|
148 |
+
# Классифицируем вопрос
|
149 |
+
question_type = self._classify_question(question)
|
150 |
+
print(f"Processing question: {question[:100]}...")
|
151 |
+
print(f"Classified as: {question_type}")
|
|
|
|
|
152 |
|
153 |
+
try:
|
154 |
+
# Генерируем ответ с помощью модели
|
155 |
+
inputs = self.tokenizer(question, return_tensors="pt")
|
156 |
+
outputs = self.model.generate(**inputs, max_length=100)
|
157 |
+
raw_answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
158 |
|
159 |
+
# Форматируем ответ
|
160 |
+
formatted_answer = self._format_answer(raw_answer, question_type)
|
161 |
|
162 |
+
# Формируем JSON-ответ
|
163 |
+
result = {"final_answer": formatted_answer}
|
164 |
+
json_response = json.dumps(result)
|
165 |
|
166 |
+
# Сохраняем в кэш
|
167 |
+
if self.use_cache:
|
168 |
+
self.cache[cache_key] = json_response
|
169 |
+
self._save_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
return json_response
|
|
|
|
|
172 |
|
|
|
173 |
except Exception as e:
|
174 |
+
error_msg = f"Error generating answer: {e}"
|
175 |
+
print(error_msg)
|
176 |
+
return json.dumps({"final_answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
|
179 |
class EvaluationRunner:
|
180 |
"""
|
181 |
+
Обрабатывает процесс оценки: получение вопросов, запуск агента,
|
182 |
+
и отправку ответов на сервер оценки.
|
183 |
"""
|
184 |
|
185 |
def __init__(self, api_url="https://agents-course-unit4-scoring.hf.space"):
|
186 |
+
"""Инициализация с API endpoints."""
|
187 |
self.api_url = api_url
|
188 |
self.questions_url = f"{api_url}/questions"
|
189 |
self.submit_url = f"{api_url}/submit"
|
190 |
self.results_url = f"{api_url}/results"
|
|
|
191 |
self.correct_answers = 0
|
192 |
+
self.total_questions = 0
|
193 |
|
194 |
def run_evaluation(self,
|
195 |
agent: Any,
|
196 |
username: str,
|
197 |
+
agent_code: str) -> tuple[str, List[Dict[str, Any]]]:
|
198 |
"""
|
199 |
+
Запускает полный процесс оценки:
|
200 |
+
1. Получает вопросы
|
201 |
+
2. Запускает агента на всех вопросах
|
202 |
+
3. Отправляет ответы
|
203 |
+
4. Возвращает результаты
|
|
|
204 |
"""
|
205 |
+
# Получаем вопросы
|
|
|
|
|
|
|
|
|
206 |
questions_data = self._fetch_questions()
|
207 |
+
if isinstance(questions_data, str): # Сообщение об ошибке
|
208 |
return questions_data, None
|
209 |
|
210 |
+
# Запускаем агента на всех вопросах
|
211 |
results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
|
212 |
if not answers_payload:
|
213 |
return "Agent did not produce any answers to submit.", results_log
|
214 |
|
215 |
+
# Отправляем ответы с логикой повторных попыток
|
216 |
+
submission_result = self._submit_answers(username, agent_code, answers_payload)
|
|
|
|
|
|
|
217 |
|
218 |
+
# Возвращаем результаты
|
219 |
return submission_result, results_log
|
220 |
|
221 |
def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
|
222 |
+
"""Получает вопросы с сервера оценки."""
|
223 |
print(f"Fetching questions from: {self.questions_url}")
|
224 |
try:
|
225 |
response = requests.get(self.questions_url, timeout=15)
|
|
|
254 |
def _run_agent_on_questions(self,
|
255 |
agent: Any,
|
256 |
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
257 |
+
"""Запускает аге��та на всех вопросах и собирает результаты."""
|
258 |
results_log = []
|
259 |
answers_payload = []
|
260 |
|
|
|
268 |
continue
|
269 |
|
270 |
try:
|
271 |
+
# Вызываем агента с task_id для правильного форматирования
|
272 |
json_response = agent(question_text, task_id)
|
273 |
|
274 |
+
# Парсим JSON-ответ
|
275 |
response_obj = json.loads(json_response)
|
276 |
|
277 |
+
# Извлекаем final_answer для отправки
|
278 |
submitted_answer = response_obj.get("final_answer", "")
|
279 |
|
280 |
answers_payload.append({
|
|
|
300 |
|
301 |
def _submit_answers(self,
|
302 |
username: str,
|
303 |
+
agent_code: str,
|
304 |
answers_payload: List[Dict[str, Any]]) -> str:
|
305 |
+
"""Отправляет ответы на сервер оценки."""
|
306 |
+
# ИСПРАВЛЕНО: Используем agent_code вместо agent_code_url
|
307 |
submission_data = {
|
308 |
"username": username.strip(),
|
309 |
+
"agent_code": agent_code.strip(), # Исправлено здесь
|
310 |
"answers": answers_payload
|
311 |
}
|
312 |
|
313 |
print(f"Submitting {len(answers_payload)} answers to: {self.submit_url}")
|
314 |
max_retries = 3
|
315 |
+
retry_delay = 5 # секунд
|
316 |
|
317 |
for attempt in range(1, max_retries + 1):
|
318 |
try:
|
|
|
331 |
max_score = result.get("max_score")
|
332 |
|
333 |
if score is not None and max_score is not None:
|
334 |
+
self.correct_answers = score # Обновляем счетчик правильных ответов
|
335 |
return f"Evaluation complete! Score: {score}/{max_score}"
|
336 |
else:
|
337 |
print(f"Received N/A results. Waiting {retry_delay} seconds before retry...")
|
|
|
354 |
else:
|
355 |
return f"Error submitting answers after {max_retries} attempts: {e}"
|
356 |
|
357 |
+
# Если мы здесь, все попытки не удались, но не вызвали исключений
|
358 |
return "Submission Successful, but results are pending!"
|
359 |
|
360 |
def _check_results(self, username: str) -> None:
|
361 |
+
"""Проверяет результаты для подсчета правильных ответов."""
|
362 |
try:
|
363 |
results_url = f"{self.results_url}?username={username}"
|
364 |
print(f"Checking results at: {results_url}")
|
|
|
384 |
print(f"Error checking results: {e}")
|
385 |
|
386 |
def get_correct_answers_count(self) -> int:
|
387 |
+
"""Возвращает количество правильных ответов."""
|
388 |
return self.correct_answers
|
389 |
|
390 |
def get_total_questions_count(self) -> int:
|
391 |
+
"""Возвращает общее количество вопросов."""
|
392 |
return self.total_questions
|
393 |
|
394 |
def print_evaluation_summary(self, username: str) -> None:
|
395 |
+
"""Выводит сводку результатов оценки."""
|
396 |
print("\n===== EVALUATION SUMMARY =====")
|
397 |
print(f"User: {username}")
|
398 |
print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
|
|
|
400 |
print(f"Total Questions: {self.total_questions}")
|
401 |
print(f"Accuracy: {(self.correct_answers / self.total_questions * 100) if self.total_questions > 0 else 0:.1f}%")
|
402 |
print("=============================\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|