Update gaia_agent.py
Browse files- gaia_agent.py +180 -701
gaia_agent.py
CHANGED
@@ -1,787 +1,266 @@
|
|
1 |
"""
|
2 |
-
|
3 |
"""
|
4 |
|
5 |
import os
|
6 |
-
import
|
7 |
-
import math
|
8 |
-
import json
|
9 |
-
import datetime
|
10 |
import requests
|
11 |
-
|
12 |
-
import
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"""
|
17 |
-
|
18 |
-
with LLM-powered flexibility and strict output formatting.
|
19 |
"""
|
20 |
|
21 |
-
def __init__(self, model_name=
|
22 |
-
"""
|
23 |
-
|
24 |
-
print(f"EnhancedGAIAAgent initializing with model: {model_name}")
|
25 |
-
|
26 |
-
# Initialize LLM components
|
27 |
-
self.device = device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
-
self._initialize_llm()
|
29 |
-
|
30 |
-
# Register specialized handlers
|
31 |
-
self.handlers = {
|
32 |
-
'calculation': self._handle_calculation,
|
33 |
-
'date_time': self._handle_date_time,
|
34 |
-
'list': self._handle_list_question,
|
35 |
-
'visual': self._handle_visual_question,
|
36 |
-
'factual': self._handle_factual_question,
|
37 |
-
'general': self._handle_general_question
|
38 |
-
}
|
39 |
-
|
40 |
-
# Define prompt templates
|
41 |
-
self.prompt_templates = {
|
42 |
-
'calculation': "Solve this step by step: {question}",
|
43 |
-
'date_time': "Answer this date/time question precisely: {question}",
|
44 |
-
'list': "Provide a comma-separated list for: {question}",
|
45 |
-
'visual': "Describe what is shown in the image related to: {question}",
|
46 |
-
'factual': "Answer this question concisely: {question}",
|
47 |
-
'reasoning': "Let's think step by step: {question}",
|
48 |
-
'general': "Provide a specific, concise answer: {question}"
|
49 |
-
}
|
50 |
-
|
51 |
-
print("EnhancedGAIAAgent initialized successfully")
|
52 |
-
|
53 |
-
def _initialize_llm(self):
|
54 |
-
"""Initialize the language model for fallback responses."""
|
55 |
try:
|
56 |
-
|
57 |
-
self.
|
58 |
-
self.
|
59 |
-
|
60 |
-
print("LLM initialized successfully")
|
61 |
except Exception as e:
|
62 |
-
print(f"
|
63 |
-
|
64 |
-
self.tokenizer = None
|
65 |
self.model = None
|
|
|
|
|
66 |
|
67 |
-
def __call__(self, question: str
|
68 |
-
"""
|
69 |
-
|
70 |
-
|
71 |
-
Args:
|
72 |
-
question: The question to answer
|
73 |
-
task_id: Optional task ID for the GAIA benchmark
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
JSON string with the required GAIA format
|
77 |
-
"""
|
78 |
-
print(f"Processing question: {question}")
|
79 |
-
|
80 |
-
# Determine question type
|
81 |
-
question_type = self._classify_question(question)
|
82 |
-
print(f"Classified as: {question_type}")
|
83 |
-
|
84 |
-
# Generate reasoning trace if appropriate
|
85 |
-
reasoning_trace = self._generate_reasoning_trace(question, question_type)
|
86 |
-
|
87 |
-
# Use the appropriate handler to get the answer
|
88 |
-
model_answer = self.handlers[question_type](question)
|
89 |
-
|
90 |
-
# Ensure answer is concise and specific
|
91 |
-
model_answer = self._ensure_concise_answer(model_answer, question_type)
|
92 |
-
|
93 |
-
# Format the response according to GAIA requirements
|
94 |
-
response = {
|
95 |
-
"task_id": task_id if task_id else "unknown_task",
|
96 |
-
"model_answer": model_answer,
|
97 |
-
"reasoning_trace": reasoning_trace
|
98 |
-
}
|
99 |
-
|
100 |
-
# Return the formatted JSON response
|
101 |
-
return json.dumps(response, ensure_ascii=False)
|
102 |
-
|
103 |
-
def _generate_reasoning_trace(self, question: str, question_type: str) -> str:
|
104 |
-
"""Generate a reasoning trace for the question if appropriate."""
|
105 |
-
# For calculation and reasoning questions, provide a trace
|
106 |
-
if question_type == 'calculation':
|
107 |
-
# Extract numbers and operation from the question
|
108 |
-
numbers = re.findall(r'\d+', question)
|
109 |
-
|
110 |
-
if len(numbers) >= 2:
|
111 |
-
if re.search(r'(sum|add|plus|\+)', question.lower()):
|
112 |
-
return f"To find the sum, I add the numbers: {' + '.join(numbers)} = {sum(int(num) for num in numbers)}"
|
113 |
-
elif re.search(r'(difference|subtract|minus|\-)', question.lower()) and len(numbers) >= 2:
|
114 |
-
return f"To find the difference, I subtract: {numbers[0]} - {numbers[1]} = {int(numbers[0]) - int(numbers[1])}"
|
115 |
-
elif re.search(r'(product|multiply|times|\*)', question.lower()) and len(numbers) >= 2:
|
116 |
-
return f"To find the product, I multiply: {numbers[0]} × {numbers[1]} = {int(numbers[0]) * int(numbers[1])}"
|
117 |
-
elif re.search(r'(divide|division|\/)', question.lower()) and len(numbers) >= 2:
|
118 |
-
if int(numbers[1]) != 0:
|
119 |
-
return f"To find the quotient, I divide: {numbers[0]} ÷ {numbers[1]} = {int(numbers[0]) / int(numbers[1])}"
|
120 |
-
|
121 |
-
# If we can't generate a specific trace, use a generic one
|
122 |
-
return "I need to identify the numbers and operations in the question, then perform the calculation step by step."
|
123 |
-
|
124 |
-
elif question_type in ['factual', 'general'] and self.llm_available:
|
125 |
-
# For factual and general questions, use LLM to generate a trace
|
126 |
-
try:
|
127 |
-
prompt = f"Explain your reasoning for answering this question: {question}"
|
128 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True).to(self.device)
|
129 |
-
outputs = self.model.generate(
|
130 |
-
inputs["input_ids"],
|
131 |
-
max_length=150,
|
132 |
-
min_length=20,
|
133 |
-
temperature=0.3,
|
134 |
-
top_p=0.95,
|
135 |
-
do_sample=True,
|
136 |
-
num_return_sequences=1
|
137 |
-
)
|
138 |
-
|
139 |
-
trace = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
140 |
-
return trace[:200] # Limit trace length
|
141 |
-
except:
|
142 |
-
pass
|
143 |
-
|
144 |
-
# For other question types or if LLM fails, provide a minimal trace
|
145 |
-
return ""
|
146 |
-
|
147 |
-
def _classify_question(self, question: str) -> str:
|
148 |
-
"""Determine the type of question for specialized handling."""
|
149 |
-
question_lower = question.lower()
|
150 |
-
|
151 |
-
# Check for calculation questions
|
152 |
-
if self._is_calculation_question(question):
|
153 |
-
return 'calculation'
|
154 |
-
|
155 |
-
# Check for date/time questions
|
156 |
-
elif self._is_date_time_question(question):
|
157 |
-
return 'date_time'
|
158 |
-
|
159 |
-
# Check for list questions
|
160 |
-
elif self._is_list_question(question):
|
161 |
-
return 'list'
|
162 |
-
|
163 |
-
# Check for visual/image questions
|
164 |
-
elif self._is_visual_question(question):
|
165 |
-
return 'visual'
|
166 |
-
|
167 |
-
# Check for factual questions
|
168 |
-
elif self._is_factual_question(question):
|
169 |
-
return 'factual'
|
170 |
-
|
171 |
-
# Default to general knowledge
|
172 |
-
else:
|
173 |
-
return 'general'
|
174 |
-
|
175 |
-
def _is_calculation_question(self, question: str) -> bool:
|
176 |
-
"""Check if the question requires mathematical calculation."""
|
177 |
-
calculation_patterns = [
|
178 |
-
r'\d+\s*[\+\-\*\/]\s*\d+', # Basic operations: 5+3, 10-2, etc.
|
179 |
-
r'(sum|add|plus|subtract|minus|multiply|divide|product|quotient)',
|
180 |
-
r'(calculate|compute|find|what is|how much|result)',
|
181 |
-
r'(square root|power|exponent|factorial|percentage|average|mean)'
|
182 |
-
]
|
183 |
-
|
184 |
-
return any(re.search(pattern, question.lower()) for pattern in calculation_patterns)
|
185 |
-
|
186 |
-
def _is_date_time_question(self, question: str) -> bool:
|
187 |
-
"""Check if the question is about date or time."""
|
188 |
-
date_time_patterns = [
|
189 |
-
r'(date|time|day|month|year|hour|minute|second)',
|
190 |
-
r'(today|tomorrow|yesterday|current|now)',
|
191 |
-
r'(calendar|schedule|appointment)',
|
192 |
-
r'(when|how long|duration|period)'
|
193 |
-
]
|
194 |
-
|
195 |
-
return any(re.search(pattern, question.lower()) for pattern in date_time_patterns)
|
196 |
-
|
197 |
-
def _is_list_question(self, question: str) -> bool:
|
198 |
-
"""Check if the question requires a list as an answer."""
|
199 |
-
list_patterns = [
|
200 |
-
r'(list|enumerate|items|elements)',
|
201 |
-
r'comma.separated',
|
202 |
-
r'(all|every|each).*(of|in)',
|
203 |
-
r'(provide|give).*(list)'
|
204 |
-
]
|
205 |
-
|
206 |
-
return any(re.search(pattern, question.lower()) for pattern in list_patterns)
|
207 |
-
|
208 |
-
def _is_visual_question(self, question: str) -> bool:
|
209 |
-
"""Check if the question is about an image or visual content."""
|
210 |
-
visual_patterns = [
|
211 |
-
r'(image|picture|photo|graph|chart|diagram|figure)',
|
212 |
-
r'(show|display|illustrate|depict)',
|
213 |
-
r'(look|see|observe|view)',
|
214 |
-
r'(visual|visually)'
|
215 |
-
]
|
216 |
-
|
217 |
-
return any(re.search(pattern, question.lower()) for pattern in visual_patterns)
|
218 |
-
|
219 |
-
def _is_factual_question(self, question: str) -> bool:
|
220 |
-
"""Check if the question is asking for a factual answer."""
|
221 |
-
factual_patterns = [
|
222 |
-
r'^(who|what|where|when|why|how)',
|
223 |
-
r'(name|identify|specify|tell me)',
|
224 |
-
r'(capital|president|inventor|author|creator|founder)',
|
225 |
-
r'(located|situated|found|discovered)'
|
226 |
-
]
|
227 |
-
|
228 |
-
return any(re.search(pattern, question.lower()) for pattern in factual_patterns)
|
229 |
-
|
230 |
-
def _handle_calculation(self, question: str) -> str:
|
231 |
-
"""Handle mathematical calculation questions with precise answers."""
|
232 |
-
# Extract numbers and operation from the question
|
233 |
-
numbers = re.findall(r'\d+', question)
|
234 |
-
|
235 |
-
# Try to extract a mathematical expression
|
236 |
-
expression_match = re.search(r'\d+\s*[\+\-\*\/]\s*\d+', question)
|
237 |
-
|
238 |
-
# Determine the operation
|
239 |
-
if re.search(r'(sum|add|plus|\+)', question.lower()) and len(numbers) >= 2:
|
240 |
-
result = sum(int(num) for num in numbers)
|
241 |
-
return str(result)
|
242 |
-
|
243 |
-
elif re.search(r'(difference|subtract|minus|\-)', question.lower()) and len(numbers) >= 2:
|
244 |
-
result = int(numbers[0]) - int(numbers[1])
|
245 |
-
return str(result)
|
246 |
-
|
247 |
-
elif re.search(r'(product|multiply|times|\*)', question.lower()) and len(numbers) >= 2:
|
248 |
-
result = int(numbers[0]) * int(numbers[1])
|
249 |
-
return str(result)
|
250 |
-
|
251 |
-
elif re.search(r'(divide|division|\/)', question.lower()) and len(numbers) >= 2 and int(numbers[1]) != 0:
|
252 |
-
result = int(numbers[0]) / int(numbers[1])
|
253 |
-
return str(result)
|
254 |
-
|
255 |
-
# For more complex calculations, try to evaluate the expression
|
256 |
-
elif expression_match:
|
257 |
-
try:
|
258 |
-
# Extract and clean the expression
|
259 |
-
expr = expression_match.group(0)
|
260 |
-
expr = expr.replace('plus', '+').replace('minus', '-')
|
261 |
-
expr = expr.replace('times', '*').replace('divided by', '/')
|
262 |
-
|
263 |
-
# Evaluate the expression
|
264 |
-
result = eval(expr)
|
265 |
-
return str(result)
|
266 |
-
except:
|
267 |
-
pass
|
268 |
-
|
269 |
-
# If rule-based approach fails, use LLM with math-specific prompt
|
270 |
-
return self._generate_llm_response(question, 'calculation')
|
271 |
-
|
272 |
-
def _handle_date_time(self, question: str) -> str:
|
273 |
-
"""Handle date and time related questions."""
|
274 |
-
now = datetime.datetime.now()
|
275 |
-
question_lower = question.lower()
|
276 |
-
|
277 |
-
if re.search(r'(today|current date|what day is it)', question_lower):
|
278 |
-
return now.strftime("%Y-%m-%d")
|
279 |
-
|
280 |
-
elif re.search(r'(time now|current time|what time is it)', question_lower):
|
281 |
-
return now.strftime("%H:%M:%S")
|
282 |
-
|
283 |
-
elif re.search(r'(day of the week|what day of the week)', question_lower):
|
284 |
-
return now.strftime("%A")
|
285 |
-
|
286 |
-
elif re.search(r'(month|current month|what month is it)', question_lower):
|
287 |
-
return now.strftime("%B")
|
288 |
-
|
289 |
-
elif re.search(r'(year|current year|what year is it)', question_lower):
|
290 |
-
return now.strftime("%Y")
|
291 |
-
|
292 |
-
# For more complex date/time questions, use LLM
|
293 |
-
return self._generate_llm_response(question, 'date_time')
|
294 |
-
|
295 |
-
def _handle_list_question(self, question: str) -> str:
|
296 |
-
"""Handle questions requiring a list as an answer."""
|
297 |
-
question_lower = question.lower()
|
298 |
-
|
299 |
-
# Common list questions with specific answers
|
300 |
-
if re.search(r'(fruit|fruits)', question_lower):
|
301 |
-
return "apple, banana, orange, grape, strawberry"
|
302 |
-
|
303 |
-
elif re.search(r'(vegetable|vegetables)', question_lower):
|
304 |
-
return "carrot, broccoli, spinach, potato, onion"
|
305 |
-
|
306 |
-
elif re.search(r'(country|countries)', question_lower):
|
307 |
-
return "USA, China, India, Russia, Brazil"
|
308 |
-
|
309 |
-
elif re.search(r'(capital|capitals)', question_lower):
|
310 |
-
return "Washington D.C., Beijing, New Delhi, Moscow, Brasilia"
|
311 |
-
|
312 |
-
elif re.search(r'(planet|planets)', question_lower):
|
313 |
-
return "Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune"
|
314 |
-
|
315 |
-
# For other list questions, use LLM with list-specific prompt
|
316 |
-
return self._generate_llm_response(question, 'list')
|
317 |
-
|
318 |
-
def _handle_visual_question(self, question: str) -> str:
|
319 |
-
"""Handle questions about images or visual content."""
|
320 |
-
# Extract key terms from the question to customize the response
|
321 |
-
key_terms = re.findall(r'[a-zA-Z]{4,}', question)
|
322 |
-
key_term = key_terms[0].lower() if key_terms else "content"
|
323 |
-
|
324 |
-
# Create a contextually relevant placeholder response
|
325 |
-
if "graph" in question.lower() or "chart" in question.lower():
|
326 |
-
return f"The {key_term} graph shows an upward trend with significant data points highlighting the key metrics relevant to your question."
|
327 |
-
|
328 |
-
elif "diagram" in question.lower():
|
329 |
-
return f"The diagram illustrates the structure and components of the {key_term}, showing how the different parts interact with each other."
|
330 |
-
|
331 |
-
elif "map" in question.lower():
|
332 |
-
return f"The map displays the geographical distribution of {key_term}, with notable concentrations in the regions most relevant to your question."
|
333 |
-
|
334 |
-
# Default visual response
|
335 |
-
return f"The image shows {key_term} with distinctive features that directly address your question. The visual elements clearly indicate the answer based on the context provided."
|
336 |
-
|
337 |
-
def _handle_factual_question(self, question: str) -> str:
|
338 |
-
"""Handle factual questions with specific answers."""
|
339 |
-
question_lower = question.lower()
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
return "Paris"
|
344 |
-
|
345 |
-
elif re.search(r'(first president of (the United States|USA|US))', question_lower):
|
346 |
-
return "George Washington"
|
347 |
-
|
348 |
-
elif re.search(r'(invented (the telephone|telephone))', question_lower):
|
349 |
-
return "Alexander Graham Bell"
|
350 |
-
|
351 |
-
elif re.search(r'(wrote (hamlet|romeo and juliet))', question_lower):
|
352 |
-
return "William Shakespeare"
|
353 |
-
|
354 |
-
elif re.search(r'(tallest mountain|highest mountain)', question_lower):
|
355 |
-
return "Mount Everest"
|
356 |
-
|
357 |
-
elif re.search(r'(largest ocean|biggest ocean)', question_lower):
|
358 |
-
return "Pacific Ocean"
|
359 |
-
|
360 |
-
# For other factual questions, use LLM with factual-specific prompt
|
361 |
-
return self._generate_llm_response(question, 'factual')
|
362 |
-
|
363 |
-
def _handle_general_question(self, question: str) -> str:
|
364 |
-
"""Handle general knowledge questions that don't fit other categories."""
|
365 |
-
# For general questions, use LLM with general or reasoning prompt
|
366 |
-
if re.search(r'(why|how|explain|reason)', question.lower()):
|
367 |
-
return self._generate_llm_response(question, 'reasoning')
|
368 |
-
else:
|
369 |
-
return self._generate_llm_response(question, 'general')
|
370 |
-
|
371 |
-
def _generate_llm_response(self, question: str, prompt_type: str) -> str:
|
372 |
-
"""Generate a response using the language model with appropriate prompt template."""
|
373 |
-
if not self.llm_available:
|
374 |
-
return self._fallback_response(question, prompt_type)
|
375 |
|
376 |
try:
|
377 |
-
|
378 |
-
|
379 |
-
prompt = template.format(question=question)
|
380 |
-
|
381 |
-
# Generate response using the model
|
382 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True).to(self.device)
|
383 |
outputs = self.model.generate(
|
384 |
inputs["input_ids"],
|
385 |
-
max_length=
|
386 |
-
min_length=
|
387 |
-
temperature=0.
|
388 |
-
top_p=0.
|
389 |
do_sample=True,
|
390 |
num_return_sequences=1
|
391 |
)
|
392 |
-
|
393 |
-
# Decode the response
|
394 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
395 |
-
|
396 |
-
# Clean up the response
|
397 |
-
response = self._clean_llm_response(response)
|
398 |
-
|
399 |
return response
|
400 |
except Exception as e:
|
401 |
-
print(f"
|
402 |
-
return self._fallback_response(question
|
403 |
|
404 |
-
def
|
405 |
-
"""
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
for prefix in prefixes:
|
409 |
if response.lower().startswith(prefix.lower()):
|
410 |
response = response[len(prefix):].strip()
|
411 |
-
|
412 |
-
|
413 |
-
hedges = ["I think", "I believe", "In my opinion", "It seems", "It appears", "Perhaps", "Maybe"]
|
414 |
-
for hedge in hedges:
|
415 |
-
if response.lower().startswith(hedge.lower()):
|
416 |
-
response = response[len(hedge):].strip()
|
417 |
-
|
418 |
-
# Remove trailing explanations after periods if the response is long
|
419 |
-
if len(response) > 50 and "." in response[30:]:
|
420 |
-
first_period = response.find(".", 30)
|
421 |
-
if first_period > 0:
|
422 |
-
response = response[:first_period + 1]
|
423 |
-
|
424 |
return response.strip()
|
425 |
|
426 |
-
def _fallback_response(self, question: str
|
427 |
-
"""
|
428 |
-
question_lower = question.lower()
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
return "
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
return
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
return "The image shows the key elements that directly answer your question based on visual evidence."
|
443 |
-
|
444 |
-
elif question_type == 'factual':
|
445 |
-
if "who" in question_lower:
|
446 |
-
return "Albert Einstein"
|
447 |
-
elif "where" in question_lower:
|
448 |
-
return "London"
|
449 |
-
elif "when" in question_lower:
|
450 |
-
return "1969"
|
451 |
-
elif "why" in question_lower:
|
452 |
-
return "due to economic and technological factors"
|
453 |
-
elif "how" in question_lower:
|
454 |
-
return "through a series of chemical reactions"
|
455 |
-
elif "what" in question_lower:
|
456 |
-
return "a fundamental concept in the field"
|
457 |
-
|
458 |
-
# General fallback
|
459 |
-
return "The answer involves multiple factors that must be considered in context."
|
460 |
-
|
461 |
-
def _ensure_concise_answer(self, answer: str, question_type: str) -> str:
|
462 |
-
"""Ensure the answer is concise and specific."""
|
463 |
-
# If answer is too short, it might be too vague
|
464 |
-
if len(answer) < 3:
|
465 |
-
return self._fallback_response("", question_type)
|
466 |
-
|
467 |
-
# If answer is too long, truncate it
|
468 |
-
if len(answer) > 200:
|
469 |
-
# Try to find a good truncation point
|
470 |
-
truncation_points = ['. ', '? ', '! ', '; ']
|
471 |
-
for point in truncation_points:
|
472 |
-
last_point = answer[:200].rfind(point)
|
473 |
-
if last_point > 30: # Ensure we have a meaningful answer
|
474 |
-
return answer[:last_point + 1].strip()
|
475 |
-
|
476 |
-
# If no good truncation point, just cut at 200 chars
|
477 |
-
return answer[:200].strip()
|
478 |
-
|
479 |
-
return answer
|
480 |
-
|
481 |
|
482 |
class EvaluationRunner:
|
483 |
"""
|
484 |
-
|
485 |
-
and submitting answers to the evaluation server.
|
486 |
"""
|
487 |
|
488 |
-
def __init__(self, api_url: str =
|
489 |
-
"""
|
490 |
self.api_url = api_url
|
491 |
self.questions_url = f"{api_url}/questions"
|
492 |
self.submit_url = f"{api_url}/submit"
|
493 |
-
self.results_url = f"{api_url}/results"
|
494 |
-
|
495 |
-
# Initialize counters for tracking correct answers
|
496 |
-
self.total_questions = 0
|
497 |
-
self.correct_answers = 0
|
498 |
-
self.ground_truth = {} # Store ground truth answers if available
|
499 |
|
500 |
def run_evaluation(self,
|
501 |
-
agent:
|
502 |
username: str,
|
503 |
-
agent_code_url: str) -> tuple[str,
|
504 |
-
"""
|
505 |
-
Run the full evaluation process:
|
506 |
-
1. Fetch questions
|
507 |
-
2. Run agent on all questions
|
508 |
-
3. Submit answers
|
509 |
-
4. Check results and count correct answers
|
510 |
-
5. Return results
|
511 |
-
"""
|
512 |
-
# Reset counters
|
513 |
-
self.total_questions = 0
|
514 |
-
self.correct_answers = 0
|
515 |
-
|
516 |
-
# Fetch questions
|
517 |
questions_data = self._fetch_questions()
|
518 |
-
if isinstance(questions_data, str):
|
519 |
return questions_data, None
|
520 |
|
521 |
-
# Run agent on all questions
|
522 |
results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
|
523 |
if not answers_payload:
|
524 |
-
return "
|
525 |
-
|
526 |
-
# Submit answers
|
527 |
-
submission_result = self._submit_answers(username, agent_code_url, answers_payload)
|
528 |
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
# Return results with correct answer count
|
533 |
-
return submission_result, results_log
|
534 |
|
535 |
def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
|
536 |
-
"""
|
537 |
-
print(f"
|
538 |
try:
|
539 |
response = requests.get(self.questions_url, timeout=15)
|
540 |
response.raise_for_status()
|
541 |
questions_data = response.json()
|
542 |
-
|
543 |
if not questions_data:
|
544 |
-
|
545 |
-
|
546 |
-
return error_msg
|
547 |
-
|
548 |
-
self.total_questions = len(questions_data)
|
549 |
-
print(f"Successfully fetched {self.total_questions} questions.")
|
550 |
return questions_data
|
551 |
-
|
552 |
-
except requests.exceptions.RequestException as e:
|
553 |
-
error_msg = f"Error fetching questions: {e}"
|
554 |
-
print(error_msg)
|
555 |
-
return error_msg
|
556 |
-
|
557 |
-
except requests.exceptions.JSONDecodeError as e:
|
558 |
-
error_msg = f"Error decoding JSON response from questions endpoint: {e}"
|
559 |
-
print(error_msg)
|
560 |
-
print(f"Response text: {response.text[:500]}")
|
561 |
-
return error_msg
|
562 |
-
|
563 |
except Exception as e:
|
564 |
-
|
565 |
-
print(error_msg)
|
566 |
-
return error_msg
|
567 |
|
568 |
def _run_agent_on_questions(self,
|
569 |
-
agent:
|
570 |
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
571 |
-
"""
|
572 |
results_log = []
|
573 |
answers_payload = []
|
574 |
-
|
575 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
576 |
for item in questions_data:
|
577 |
task_id = item.get("task_id")
|
578 |
question_text = item.get("question")
|
579 |
-
|
580 |
if not task_id or question_text is None:
|
581 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
582 |
continue
|
583 |
-
|
584 |
try:
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
# Parse the JSON response
|
589 |
-
response_obj = json.loads(json_response)
|
590 |
-
|
591 |
-
# Extract the model_answer for submission
|
592 |
-
submitted_answer = response_obj.get("model_answer", "")
|
593 |
-
|
594 |
-
answers_payload.append({
|
595 |
-
"task_id": task_id,
|
596 |
-
"submitted_answer": submitted_answer
|
597 |
-
})
|
598 |
-
|
599 |
-
results_log.append({
|
600 |
-
"Task ID": task_id,
|
601 |
-
"Question": question_text,
|
602 |
-
"Submitted Answer": submitted_answer,
|
603 |
-
"Full Response": json_response
|
604 |
-
})
|
605 |
except Exception as e:
|
606 |
-
|
607 |
-
results_log.append({
|
608 |
-
"Task ID": task_id,
|
609 |
-
"Question": question_text,
|
610 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
611 |
-
})
|
612 |
-
|
613 |
return results_log, answers_payload
|
614 |
|
615 |
-
def
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
"""
|
620 |
submission_data = {
|
621 |
"username": username.strip(),
|
622 |
-
"agent_code_url": agent_code_url
|
623 |
"answers": answers_payload
|
624 |
}
|
625 |
-
|
626 |
-
|
627 |
-
max_retries = 3
|
628 |
-
retry_delay = 5 # seconds
|
629 |
-
|
630 |
-
for attempt in range(1, max_retries + 1):
|
631 |
try:
|
632 |
-
print(f"
|
633 |
-
response = requests.post(
|
634 |
-
self.submit_url,
|
635 |
-
json=submission_data,
|
636 |
-
headers={"Content-Type": "application/json"},
|
637 |
-
timeout=30
|
638 |
-
)
|
639 |
response.raise_for_status()
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
except requests.exceptions.RequestException as e:
|
663 |
-
print(f"Submission attempt {attempt} failed: {e}")
|
664 |
-
if attempt < max_retries:
|
665 |
-
print(f"Waiting {retry_delay} seconds before retry...")
|
666 |
-
time.sleep(retry_delay)
|
667 |
else:
|
668 |
-
return f"
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
score = data.get("score")
|
685 |
-
if score is not None:
|
686 |
-
self.correct_answers = int(score)
|
687 |
-
print(f"✓ Correct answers: {self.correct_answers}/{self.total_questions}")
|
688 |
-
else:
|
689 |
-
print("Score information not available in results")
|
690 |
-
else:
|
691 |
-
print("Results data is not in expected format")
|
692 |
-
except:
|
693 |
-
print("Could not parse results JSON")
|
694 |
-
else:
|
695 |
-
print(f"Could not fetch results, status code: {response.status_code}")
|
696 |
-
except Exception as e:
|
697 |
-
print(f"Error checking results: {e}")
|
698 |
-
|
699 |
-
def get_correct_answers_count(self) -> int:
|
700 |
-
"""Get the number of correct answers."""
|
701 |
-
return self.correct_answers
|
702 |
-
|
703 |
-
def get_total_questions_count(self) -> int:
|
704 |
-
"""Get the total number of questions."""
|
705 |
-
return self.total_questions
|
706 |
-
|
707 |
-
def print_evaluation_summary(self, username: str) -> None:
|
708 |
-
"""Print a summary of the evaluation results."""
|
709 |
-
print("\n===== EVALUATION SUMMARY =====")
|
710 |
-
print(f"User: {username}")
|
711 |
-
print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
|
712 |
-
print(f"Correct Answers: {self.correct_answers}")
|
713 |
-
print(f"Total Questions: {self.total_questions}")
|
714 |
-
print(f"Accuracy: {(self.correct_answers / self.total_questions * 100) if self.total_questions > 0 else 0:.1f}%")
|
715 |
-
print("=============================\n")
|
716 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
717 |
|
718 |
-
#
|
719 |
def test_agent():
|
720 |
-
"""
|
721 |
-
agent =
|
722 |
-
|
723 |
test_questions = [
|
724 |
-
|
725 |
-
"
|
726 |
-
"
|
727 |
-
|
728 |
-
# Date/time questions
|
729 |
-
"What is today's date?",
|
730 |
-
"What day of the week is it?",
|
731 |
-
|
732 |
-
# List questions
|
733 |
-
"List five fruits",
|
734 |
-
"What are the planets in our solar system?",
|
735 |
-
|
736 |
-
# Visual questions
|
737 |
-
"What does the image show?",
|
738 |
-
"Describe the chart in the image",
|
739 |
-
|
740 |
-
# Factual questions
|
741 |
-
"Who was the first president of the United States?",
|
742 |
-
"What is the capital of France?",
|
743 |
-
"How does photosynthesis work?",
|
744 |
-
|
745 |
-
# General questions
|
746 |
-
"Why is the sky blue?",
|
747 |
-
"What are the implications of quantum mechanics?"
|
748 |
]
|
749 |
-
|
750 |
-
print("\n=== AGENT TEST RESULTS ===")
|
751 |
-
correct_count = 0
|
752 |
-
total_count = len(test_questions)
|
753 |
-
|
754 |
for question in test_questions:
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
json_response = agent(question, task_id)
|
760 |
-
|
761 |
-
print(f"\nQ: {question}")
|
762 |
-
print(f"Response: {json_response}")
|
763 |
-
|
764 |
-
# Parse and print the model_answer for clarity
|
765 |
-
try:
|
766 |
-
response_obj = json.loads(json_response)
|
767 |
-
model_answer = response_obj.get('model_answer', '')
|
768 |
-
print(f"Model Answer: {model_answer}")
|
769 |
-
|
770 |
-
# For testing purposes, simulate correct answers
|
771 |
-
# In a real scenario, this would compare with ground truth
|
772 |
-
if len(model_answer) > 0 and not model_answer.startswith("AGENT ERROR"):
|
773 |
-
correct_count += 1
|
774 |
-
except:
|
775 |
-
print("Error parsing JSON response")
|
776 |
-
|
777 |
-
# Print test summary with correct answer count
|
778 |
-
print("\n===== TEST SUMMARY =====")
|
779 |
-
print(f"Correct Answers: {correct_count}/{total_count}")
|
780 |
-
print(f"Accuracy: {(correct_count / total_count * 100):.1f}%")
|
781 |
-
print("=======================\n")
|
782 |
-
|
783 |
-
return "Test completed successfully"
|
784 |
-
|
785 |
|
786 |
if __name__ == "__main__":
|
787 |
test_agent()
|
|
|
|
1 |
"""
|
2 |
+
Улучшенный агент GAIA с интеграцией LLM для курса Hugging Face
|
3 |
"""
|
4 |
|
5 |
import os
|
6 |
+
import gradio as gr
|
|
|
|
|
|
|
7 |
import requests
|
8 |
+
import pandas as pd
|
9 |
+
import json
|
10 |
+
import time
|
11 |
+
from typing import List, Dict, Any, Optional, Callable, Union
|
12 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
13 |
|
14 |
+
# --- Константы ---
|
15 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
+
DEFAULT_MODEL = "google/flan-t5-small" # Меньшая модель для быстрой загрузки
|
17 |
+
MAX_RETRIES = 3 # Максимальное количество попыток отправки
|
18 |
+
RETRY_DELAY = 5 # Задержка между попытками в секундах
|
19 |
+
|
20 |
+
class LLMGAIAAgent:
|
21 |
"""
|
22 |
+
Улучшенный агент GAIA, использующий языковую модель для генерации ответов.
|
|
|
23 |
"""
|
24 |
|
25 |
+
def __init__(self, model_name=DEFAULT_MODEL):
|
26 |
+
"""Инициализация агента с языковой моделью."""
|
27 |
+
print(f"Инициализация LLMGAIAAgent с моделью: {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
try:
|
29 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
31 |
+
self.model_name = model_name
|
32 |
+
print(f"Успешно загружена модель: {model_name}")
|
|
|
33 |
except Exception as e:
|
34 |
+
print(f"Ошибка загрузки модели: {e}")
|
35 |
+
print("Переход к шаблонным ответам")
|
|
|
36 |
self.model = None
|
37 |
+
self.tokenizer = None
|
38 |
+
self.model_name = None
|
39 |
|
40 |
+
def __call__(self, question: str) -> str:
|
41 |
+
"""Обработка вопроса и возврат ответа с использованием языковой модели."""
|
42 |
+
print(f"Обработка вопроса: {question}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
if self.model is None or self.tokenizer is None:
|
45 |
+
return self._fallback_response(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
try:
|
48 |
+
prompt = self._prepare_prompt(question)
|
49 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
|
|
|
|
|
|
|
|
50 |
outputs = self.model.generate(
|
51 |
inputs["input_ids"],
|
52 |
+
max_length=150,
|
53 |
+
min_length=20,
|
54 |
+
temperature=0.7,
|
55 |
+
top_p=0.9,
|
56 |
do_sample=True,
|
57 |
num_return_sequences=1
|
58 |
)
|
|
|
|
|
59 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
60 |
+
response = self._clean_response(response)
|
|
|
|
|
|
|
61 |
return response
|
62 |
except Exception as e:
|
63 |
+
print(f"Ошибка генерации ответа: {e}")
|
64 |
+
return self._fallback_response(question)
|
65 |
|
66 |
+
def _prepare_prompt(self, question: str) -> str:
|
67 |
+
"""Подготовка подходящего запроса на основе типа вопроса."""
|
68 |
+
question_lower = question.lower()
|
69 |
+
if any(keyword in question_lower for keyword in [
|
70 |
+
"calculate", "compute", "sum", "difference",
|
71 |
+
"product", "divide", "plus", "minus", "times"
|
72 |
+
]):
|
73 |
+
return f"Решите эту математическую задачу шаг за шагом: {question}"
|
74 |
+
elif any(keyword in question_lower for keyword in [
|
75 |
+
"image", "picture", "photo", "graph", "chart", "diagram"
|
76 |
+
]):
|
77 |
+
return f"Опишите, что может быть изображено на картинке, связанной с этим вопросом: {question}"
|
78 |
+
elif any(keyword in question_lower for keyword in [
|
79 |
+
"who", "what", "where", "when", "why", "how"
|
80 |
+
]):
|
81 |
+
return f"Дайте краткий и точный ответ на этот фактический вопрос: {question}"
|
82 |
+
else:
|
83 |
+
return f"Дайте краткий, информативный ответ на этот вопрос: {question}"
|
84 |
+
|
85 |
+
def _clean_response(self, response: str) -> str:
|
86 |
+
"""Очистка ответа модели для получения чистого текста."""
|
87 |
+
prefixes = [
|
88 |
+
"Answer:", "Response:", "A:", "The answer is:",
|
89 |
+
"It is:", "I think it is:", "The result is:",
|
90 |
+
"Based on the image:", "In the image:",
|
91 |
+
"The image shows:", "From the image:"
|
92 |
+
]
|
93 |
for prefix in prefixes:
|
94 |
if response.lower().startswith(prefix.lower()):
|
95 |
response = response[len(prefix):].strip()
|
96 |
+
if len(response) < 10:
|
97 |
+
return self._fallback_response("general")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
return response.strip()
|
99 |
|
100 |
+
def _fallback_response(self, question: str) -> str:
|
101 |
+
"""Резервный ответ, если модель не сработала."""
|
102 |
+
question_lower = question.lower() if isinstance(question, str) else ""
|
103 |
+
if "who" in question_lower:
|
104 |
+
return "Известная личность в этой области."
|
105 |
+
elif "when" in question_lower:
|
106 |
+
return "Это произошло в значительный исторический период."
|
107 |
+
elif "where" in question_lower:
|
108 |
+
return "Место известно своей культурной значимостью."
|
109 |
+
elif "what" in question_lower:
|
110 |
+
return "Это важное понятие или объект."
|
111 |
+
elif "why" in question_lower:
|
112 |
+
return "Это произошло из-за ряда факторов."
|
113 |
+
elif "how" in question_lower:
|
114 |
+
return "Процесс включает несколько ключевых шагов."
|
115 |
+
return "Ответ включает несколько важных факторов."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
class EvaluationRunner:
|
118 |
"""
|
119 |
+
Управление процессом оценки: получение вопросов, запуск агента и отправка ответов.
|
|
|
120 |
"""
|
121 |
|
122 |
+
def __init__(self, api_url: str = DEFAULT_API_URL):
|
123 |
+
"""Инициализация с конечными точками API."""
|
124 |
self.api_url = api_url
|
125 |
self.questions_url = f"{api_url}/questions"
|
126 |
self.submit_url = f"{api_url}/submit"
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
def run_evaluation(self,
|
129 |
+
agent: Callable[[str], str],
|
130 |
username: str,
|
131 |
+
agent_code_url: str) -> tuple[str, pd.DataFrame]:
|
132 |
+
"""Запуск полного процесса оценки."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
questions_data = self._fetch_questions()
|
134 |
+
if isinstance(questions_data, str):
|
135 |
return questions_data, None
|
136 |
|
|
|
137 |
results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
|
138 |
if not answers_payload:
|
139 |
+
return "Агент не дал ответов для отправки.", pd.DataFrame(results_log)
|
|
|
|
|
|
|
140 |
|
141 |
+
submission_result = self._submit_answers_with_retry(username, agent_code_url, answers_payload)
|
142 |
+
return submission_result, pd.DataFrame(results_log)
|
|
|
|
|
|
|
143 |
|
144 |
def _fetch_questions(self) -> Union[List[Dict[str, Any]], str]:
|
145 |
+
"""Получение вопросов с сервера оценки."""
|
146 |
+
print(f"Получение вопросов с: {self.questions_url}")
|
147 |
try:
|
148 |
response = requests.get(self.questions_url, timeout=15)
|
149 |
response.raise_for_status()
|
150 |
questions_data = response.json()
|
|
|
151 |
if not questions_data:
|
152 |
+
return "Список вопросов пуст или некорректен."
|
153 |
+
print(f"Успешно получено {len(questions_data)} вопросов.")
|
|
|
|
|
|
|
|
|
154 |
return questions_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
except Exception as e:
|
156 |
+
return f"Ошибка получения вопросов: {e}"
|
|
|
|
|
157 |
|
158 |
def _run_agent_on_questions(self,
|
159 |
+
agent: Callable[[str], str],
|
160 |
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
161 |
+
"""Запуск агента на всех вопросах."""
|
162 |
results_log = []
|
163 |
answers_payload = []
|
164 |
+
print(f"Запуск агента на {len(questions_data)} вопросах...")
|
|
|
165 |
for item in questions_data:
|
166 |
task_id = item.get("task_id")
|
167 |
question_text = item.get("question")
|
|
|
168 |
if not task_id or question_text is None:
|
|
|
169 |
continue
|
|
|
170 |
try:
|
171 |
+
submitted_answer = agent(question_text)
|
172 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
173 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
except Exception as e:
|
175 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ОШИБКА: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
return results_log, answers_payload
|
177 |
|
178 |
+
def _submit_answers_with_retry(self,
|
179 |
+
username: str,
|
180 |
+
agent_code_url: str,
|
181 |
+
answers_payload: List[Dict[str, Any]]) -> str:
|
182 |
+
"""Отправка ответов с логикой повтора."""
|
183 |
submission_data = {
|
184 |
"username": username.strip(),
|
185 |
+
"agent_code_url": agent_code_url, # Исправленный ключ
|
186 |
"answers": answers_payload
|
187 |
}
|
188 |
+
print(f"Отправка {len(answers_payload)} ответов для пользователя '{username}'...")
|
189 |
+
for attempt in range(1, MAX_RETRIES + 1):
|
|
|
|
|
|
|
|
|
190 |
try:
|
191 |
+
print(f"Попытка {attempt} из {MAX_RETRIES}...")
|
192 |
+
response = requests.post(self.submit_url, json=submission_data, timeout=60)
|
|
|
|
|
|
|
|
|
|
|
193 |
response.raise_for_status()
|
194 |
+
result_data = response.json()
|
195 |
+
final_status = (
|
196 |
+
f"Отправка успешна!\n"
|
197 |
+
f"Пользователь: {result_data.get('username')}\n"
|
198 |
+
f"Общий балл: {result_data.get('overall_score', 'N/A')}\n"
|
199 |
+
f"Правильные ответы: {result_data.get('correct_answers', 'N/A')}\n"
|
200 |
+
f"Всего вопросов: {result_data.get('total_questions', 'N/A')}\n"
|
201 |
+
)
|
202 |
+
if all(result_data.get(key, "N/A") == "N/A" for key in ["overall_score", "correct_answers", "total_questions"]):
|
203 |
+
final_status += (
|
204 |
+
"\nПримечание: Результаты показывают 'N/A'. Возможные причины:\n"
|
205 |
+
"- Ограничения активности аккаунта\n"
|
206 |
+
"- Задержка обработки\n"
|
207 |
+
"- Проблема с API\n"
|
208 |
+
f"Проверьте статус: {DEFAULT_API_URL}/results?username={username}"
|
209 |
+
)
|
210 |
+
print(final_status)
|
211 |
+
return final_status
|
212 |
+
except Exception as e:
|
213 |
+
if attempt < MAX_RETRIES:
|
214 |
+
time.sleep(RETRY_DELAY)
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
else:
|
216 |
+
return f"Ошибка отправки после {MAX_RETRIES} попыток: {e}"
|
217 |
+
|
218 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None, *args):
|
219 |
+
"""Основная функция для запуска через Gradio."""
|
220 |
+
if not profile:
|
221 |
+
return "Пожалуйста, войдите в Hugging Face.", None
|
222 |
+
username = profile.username
|
223 |
+
space_id = os.getenv("SPACE_ID")
|
224 |
+
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
225 |
+
print(f"URL кода агента: {agent_code_url}")
|
226 |
+
try:
|
227 |
+
agent = LLMGAIAAgent()
|
228 |
+
runner = EvaluationRunner()
|
229 |
+
return runner.run_evaluation(agent, username, agent_code_url)
|
230 |
+
except Exception as e:
|
231 |
+
return f"Ошибка инициализации: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
+
# --- Интерфейс Gradio ---
|
234 |
+
with gr.Blocks() as demo:
|
235 |
+
gr.Markdown("# Оценка агента GAIA (с улучшенным LLM)")
|
236 |
+
gr.Markdown("## Инструкции:")
|
237 |
+
gr.Markdown("1. Войдите в аккаунт Hugging Face.")
|
238 |
+
gr.Markdown("2. Нажмите 'Запустить оценку и отправить все ответы'.")
|
239 |
+
gr.Markdown("3. Посмотрите результаты в разделе вывода.")
|
240 |
+
with gr.Row():
|
241 |
+
login_button = gr.LoginButton(value="Войти через Hugging Face")
|
242 |
+
with gr.Row():
|
243 |
+
submit_button = gr.Button("Запустить оценку и отправить все ответы")
|
244 |
+
with gr.Row():
|
245 |
+
output_status = gr.Textbox(label="Результат отправки", lines=10)
|
246 |
+
output_results = gr.Dataframe(label="Вопросы и ответы агента")
|
247 |
+
submit_button.click(run_and_submit_all, inputs=[login_button], outputs=[output_status, output_results])
|
248 |
|
249 |
+
# --- Локальная тестовая функция ---
|
250 |
def test_agent():
|
251 |
+
"""Тестирование агента с примерами вопросов."""
|
252 |
+
agent = LLMGAIAAgent()
|
|
|
253 |
test_questions = [
|
254 |
+
"What is 2 + 2?",
|
255 |
+
"Who is the first president of the USA?",
|
256 |
+
"What is the capital of France?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
]
|
|
|
|
|
|
|
|
|
|
|
258 |
for question in test_questions:
|
259 |
+
answer = agent(question)
|
260 |
+
print(f"Вопрос: {question}")
|
261 |
+
print(f"Ответ: {answer}")
|
262 |
+
print("---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
if __name__ == "__main__":
|
265 |
test_agent()
|
266 |
+
# demo.launch()
|