yoshizen commited on
Commit
c77d32d
·
verified ·
1 Parent(s): c628de4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +183 -159
app.py CHANGED
@@ -1,178 +1,202 @@
1
- """
2
- Простой агент для Agent Challenge с использованием Gradio и Mixtral
3
- """
4
-
5
  import os
6
- import re
7
- import math
8
- import json
9
  import gradio as gr
10
- from huggingface_hub import InferenceClient
 
 
 
 
11
 
12
- # Безопасная обработка токена Hugging Face
13
- # Токен должен быть установлен как переменная окружения HF_TOKEN
14
- # или передан через Secrets в Hugging Face Spaces
15
- HF_TOKEN = os.environ.get("HF_TOKEN")
16
 
17
- # Инициализация клиента Hugging Face
18
- client = None
19
- try:
20
- client = InferenceClient(
21
- model="mistralai/Mixtral-8x7B-Instruct-v0.1", # Рекомендуемая модель
22
- token=HF_TOKEN
23
- )
24
- except Exception as e:
25
- print(f"Ошибка инициализации InferenceClient: {e}. Проверьте токен и доступность модели.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- # --- Определение инструментов ---
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- def calculator(expression: str) -> str:
30
- """Выполняет математические вычисления."""
 
 
 
31
  try:
32
- # Ограничение на доступные функции для безопасности
33
- allowed_names = {k: v for k, v in math.__dict__.items() if not k.startswith("__")}
34
- allowed_names["abs"] = abs
35
- allowed_names["round"] = round
36
- allowed_names["max"] = max
37
- allowed_names["min"] = min
38
-
39
- # Удаление потенциально опасных символов
40
- safe_expression = re.sub(r"[^0-9\.\+\-\*\/\(\)\s]|\b(import|exec|eval|open|lambda|\_\_)\b", "", expression)
41
-
42
- if safe_expression != expression:
43
- return "Ошибка: Обнаружены недопустимые символы в выражении."
44
-
45
- result = eval(safe_expression, {"__builtins__": {}}, allowed_names)
46
- return f"Результат: {result}"
47
  except Exception as e:
48
- return f"Ошибка в вычислении: {str(e)}"
 
49
 
50
- def web_search(query: str) -> str:
51
- """Выполняет поиск в интернете по заданному запросу (симуляция)."""
52
- # Простая симуляция для теста
53
- if "погода" in query.lower():
54
- return "В городе, который вы ищете, сегодня солнечно, +25C."
55
- elif "hugging face" in query.lower():
56
- return "Hugging Face - это платформа и сообщество для работы с моделями машинного обучения."
57
- elif "python" in query.lower():
58
- return "Python - высокоуровневый язык программирования общего назначения, созданный Гвидо ван Россумом."
59
- else:
60
- return f"По вашему запросу '{query}' найдена общая информация."
61
 
62
- # --- Функция для запуска агента ---
63
- def run_agent(query: str) -> str:
64
- """Запускает агента для ответа на вопрос."""
65
- if client is None:
66
- return "Ошибка: Клиент Hugging Face не инициализирован. Проверьте токен и доступность модели."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
- # Определение инструментов для модели
69
- tools = [
70
- {
71
- "type": "function",
72
- "function": {
73
- "name": "calculator",
74
- "description": "Выполняет математические вычисления",
75
- "parameters": {
76
- "type": "object",
77
- "properties": {
78
- "expression": {
79
- "type": "string",
80
- "description": "Математическое выражение для вычисления"
81
- }
82
- },
83
- "required": ["expression"]
84
- }
85
- }
86
- },
87
- {
88
- "type": "function",
89
- "function": {
90
- "name": "web_search",
91
- "description": "Ищет информацию в интернете",
92
- "parameters": {
93
- "type": "object",
94
- "properties": {
95
- "query": {
96
- "type": "string",
97
- "description": "Поисковый запрос"
98
- }
99
- },
100
- "required": ["query"]
101
- }
102
- }
103
- }
104
- ]
105
 
106
- # Начальное сообщение от пользователя
107
- messages = [{"role": "user", "content": query}]
108
 
109
- # Максимальное количество итераций
110
- max_iterations = 5
111
 
112
- for _ in range(max_iterations):
113
- # Вызов модели
114
- response = client.chat_completion(
115
- messages=messages,
116
- tools=tools,
117
- tool_choice="auto",
118
- temperature=0.1,
119
- max_tokens=1024
120
- )
121
-
122
- # Получение ответа модели
123
- assistant_message = response["choices"][0]["message"]
124
- messages.append(assistant_message)
125
-
126
- # Проверка на наличие вызовов инструментов
127
- if "tool_calls" in assistant_message and assistant_message["tool_calls"]:
128
- for tool_call in assistant_message["tool_calls"]:
129
- # Получение имени и аргументов инструмента
130
- function_name = tool_call["function"]["name"]
131
- function_args = json.loads(tool_call["function"]["arguments"])
132
-
133
- # Вызов соответствующего инструмента
134
- if function_name == "calculator":
135
- result = calculator(function_args["expression"])
136
- elif function_name == "web_search":
137
- result = web_search(function_args["query"])
138
- else:
139
- result = f"Инструмент {function_name} не найден."
140
-
141
- # Добавление результата в сообщения
142
- messages.append({
143
- "role": "tool",
144
- "tool_call_id": tool_call["id"],
145
- "name": function_name,
146
- "content": result
147
- })
148
- else:
149
- # Если нет вызовов инструментов, возвращаем ответ
150
- return assistant_message["content"]
151
 
152
- # Если достигнуто максимальное количество итераций, возвращаем последний ответ
153
- return messages[-1]["content"]
154
-
155
- # --- Создание Gradio интерфейса ---
156
- def gradio_interface(query):
157
- """Обработчик для Gradio интерфейса."""
158
- if not query.strip():
159
- return "Пожалуйста, введите вопрос."
160
 
161
- try:
162
- response = run_agent(query)
163
- return response
164
- except Exception as e:
165
- return f"Произошла ошибка: {str(e)}"
166
-
167
- # Создание интерфейса
168
- demo = gr.Interface(
169
- fn=gradio_interface,
170
- inputs=gr.Textbox(lines=2, placeholder="Введите ваш вопрос здесь..."),
171
- outputs="text",
172
- title="Agent Challenge - Финальный агент",
173
- description="Этот агент может отвечать на вопросы, выполнять математические вычисления и искать информацию."
174
- )
175
 
176
- # Запуск интерфейса
177
  if __name__ == "__main__":
178
  demo.launch()
 
 
 
 
 
1
  import os
 
 
 
2
  import gradio as gr
3
+ import requests
4
+ import pandas as pd
5
+ import json
6
+ import re
7
+ from typing import List, Dict, Any, Optional
8
 
9
+ # --- Constants ---
10
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
 
11
 
12
+ # --- Simple GAIA Agent Definition ---
13
+ class SimpleGAIAAgent:
14
+ def __init__(self):
15
+ print("SimpleGAIAAgent initialized.")
16
+
17
+ def __call__(self, question: str) -> str:
18
+ """Main method to process questions and generate answers"""
19
+ print(f"Agent received question: {question}")
20
+
21
+ # Basic question analysis
22
+ question_lower = question.lower()
23
+
24
+ # Handle calculation questions
25
+ if any(keyword in question_lower for keyword in ["calculate", "compute", "sum", "difference", "product", "divide"]):
26
+ # Extract numbers
27
+ numbers = re.findall(r'\d+', question)
28
+ if len(numbers) >= 2:
29
+ if "sum" in question_lower or "add" in question_lower or "plus" in question_lower:
30
+ result = sum(int(num) for num in numbers)
31
+ return f"The sum of the numbers is {result}"
32
+ elif "difference" in question_lower or "subtract" in question_lower or "minus" in question_lower:
33
+ result = int(numbers[0]) - int(numbers[1])
34
+ return f"The difference between {numbers[0]} and {numbers[1]} is {result}"
35
+ elif "product" in question_lower or "multiply" in question_lower:
36
+ result = int(numbers[0]) * int(numbers[1])
37
+ return f"The product of {numbers[0]} and {numbers[1]} is {result}"
38
+ elif "divide" in question_lower:
39
+ if int(numbers[1]) != 0:
40
+ result = int(numbers[0]) / int(numbers[1])
41
+ return f"The result of dividing {numbers[0]} by {numbers[1]} is {result}"
42
+ else:
43
+ return "Cannot divide by zero"
44
+ return "I'll calculate this for you: " + question
45
+
46
+ # Handle image analysis questions
47
+ elif any(keyword in question_lower for keyword in ["image", "picture", "photo", "graph", "chart"]):
48
+ return "Based on the image, I can see several key elements that help answer your question. The main subject appears to be [description] which indicates [answer]."
49
+
50
+ # Handle factual questions
51
+ elif any(keyword in question_lower for keyword in ["who", "what", "where", "when", "why", "how"]):
52
+ if "who" in question_lower:
53
+ return "The person involved is a notable figure in this field with significant contributions and achievements."
54
+ elif "when" in question_lower:
55
+ return "This occurred during a significant historical period, specifically in the early part of the relevant era."
56
+ elif "where" in question_lower:
57
+ return "The location is in a region known for its historical and cultural significance."
58
+ elif "what" in question_lower:
59
+ return "This refers to an important concept or entity that has several key characteristics and functions."
60
+ elif "why" in question_lower:
61
+ return "This happened due to a combination of factors including historical context, individual decisions, and broader societal trends."
62
+ elif "how" in question_lower:
63
+ return "The process involves several key steps that must be followed in sequence to achieve the desired outcome."
64
+
65
+ # General knowledge questions
66
+ else:
67
+ return "Based on my analysis, the answer to your question involves several important factors. First, we need to consider the context and specific details mentioned. Taking all available information into account, the most accurate response would be a comprehensive explanation that addresses all aspects of your query."
68
 
69
+ # FIXED FUNCTION: Added *args to handle extra arguments from Gradio
70
+ def run_and_submit_all(profile: gr.OAuthProfile | None, *args):
71
+ """
72
+ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results.
73
+ """
74
+ # --- Determine HF Space Runtime URL and Repo URL ---
75
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
76
+ if profile:
77
+ username= f"{profile.username}"
78
+ print(f"User logged in: {username}")
79
+ else:
80
+ print("User not logged in.")
81
+ return "Please Login to Hugging Face with the button.", None
82
 
83
+ api_url = DEFAULT_API_URL
84
+ questions_url = f"{api_url}/questions"
85
+ submit_url = f"{api_url}/submit"
86
+
87
+ # 1. Instantiate Agent ( modify this part to create your agent)
88
  try:
89
+ agent = SimpleGAIAAgent()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  except Exception as e:
91
+ print(f"Error instantiating agent: {e}")
92
+ return f"Error initializing agent: {e}", None
93
 
94
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
95
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
96
+ print(agent_code)
 
 
 
 
 
 
 
 
97
 
98
+ # 2. Fetch Questions
99
+ print(f"Fetching questions from: {questions_url}")
100
+ try:
101
+ response = requests.get(questions_url, timeout=15)
102
+ response.raise_for_status()
103
+ questions_data = response.json()
104
+ if not questions_data:
105
+ print("Fetched questions list is empty.")
106
+ return "Fetched questions list is empty or invalid format.", None
107
+ print(f"Fetched {len(questions_data)} questions.")
108
+ except requests.exceptions.RequestException as e:
109
+ print(f"Error fetching questions: {e}")
110
+ return f"Error fetching questions: {e}", None
111
+ except requests.exceptions.JSONDecodeError as e:
112
+ print(f"Error decoding JSON response from questions endpoint: {e}")
113
+ print(f"Response text: {response.text[:500]}")
114
+ return f"Error decoding server response for questions: {e}", None
115
+ except Exception as e:
116
+ print(f"An unexpected error occurred fetching questions: {e}")
117
+ return f"An unexpected error occurred fetching questions: {e}", None
118
+
119
+ # 3. Run your Agent
120
+ results_log = []
121
+ answers_payload = []
122
+ print(f"Running agent on {len(questions_data)} questions...")
123
+ for item in questions_data:
124
+ task_id = item.get("task_id")
125
+ question_text = item.get("question")
126
+ if not task_id or question_text is None:
127
+ print(f"Skipping item with missing task_id or question: {item}")
128
+ continue
129
+
130
+ try:
131
+ submitted_answer = agent(question_text)
132
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
133
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
134
+ except Exception as e:
135
+ print(f"Error running agent on task {task_id}: {e}")
136
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
137
+
138
+ if not answers_payload:
139
+ print("Agent did not produce any answers to submit.")
140
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
141
+
142
+ # 4. Prepare Submission
143
+ submission_data = {
144
+ "username": username.strip(),
145
+ "agent_code": agent_code,
146
+ "answers": answers_payload
147
+ }
148
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
149
+ print(status_update)
150
+
151
+ # 5. Submit
152
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
153
+ try:
154
+ response = requests.post(submit_url, json=submission_data, timeout=60)
155
+ response.raise_for_status()
156
+ result_data = response.json()
157
+ final_status = (
158
+ f"Submission Successful!\n"
159
+ f"User: {result_data.get('username')}\n"
160
+ f"Overall Score: {result_data.get('overall_score', 'N/A')}\n"
161
+ f"Correct Answers: {result_data.get('correct_answers', 'N/A')}\n"
162
+ f"Total Questions: {result_data.get('total_questions', 'N/A')}\n"
163
+ )
164
+ print(final_status)
165
+ return final_status, pd.DataFrame(results_log)
166
+ except requests.exceptions.RequestException as e:
167
+ error_msg = f"Error submitting answers: {e}"
168
+ print(error_msg)
169
+ return error_msg, pd.DataFrame(results_log)
170
+ except Exception as e:
171
+ error_msg = f"An unexpected error occurred during submission: {e}"
172
+ print(error_msg)
173
+ return error_msg, pd.DataFrame(results_log)
174
+
175
+ # --- Gradio Interface ---
176
+ with gr.Blocks() as demo:
177
+ gr.Markdown("# Basic Agent Evaluation Runner")
178
 
179
+ gr.Markdown("Instructions:")
180
+ gr.Markdown("1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...")
181
+ gr.Markdown("2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.")
182
+ gr.Markdown("3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
+ gr.Markdown("---")
 
185
 
186
+ gr.Markdown("Disclaimers: Once clicking on the \"submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.")
 
187
 
188
+ with gr.Row():
189
+ login_button = gr.LoginButton(value="Sign in with Hugging Face")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
+ with gr.Row():
192
+ submit_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
 
 
 
 
193
 
194
+ with gr.Row():
195
+ with gr.Column():
196
+ output_status = gr.Textbox(label="Run Status / Submission Result")
197
+ output_results = gr.Dataframe(label="Questions and Agent Answers")
198
+
199
+ submit_button.click(run_and_submit_all, inputs=[login_button], outputs=[output_status, output_results])
 
 
 
 
 
 
 
 
200
 
 
201
  if __name__ == "__main__":
202
  demo.launch()