Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,16 @@
|
|
1 |
-
import os
|
2 |
import json
|
3 |
import time
|
4 |
-
import torch
|
5 |
import requests
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
-
from
|
9 |
-
from
|
10 |
|
11 |
# Константы
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
-
MAX_RETRIES = 3
|
14 |
-
RETRY_DELAY = 5
|
15 |
|
16 |
class EvaluationRunner:
|
17 |
-
"""
|
18 |
|
19 |
def __init__(self, api_url=DEFAULT_API_URL):
|
20 |
self.api_url = api_url
|
@@ -24,213 +20,132 @@ class EvaluationRunner:
|
|
24 |
self.correct_answers = 0
|
25 |
self.total_questions = 0
|
26 |
|
27 |
-
def run_evaluation(self,
|
28 |
-
agent: Callable[[str], str],
|
29 |
-
username: str,
|
30 |
-
agent_code: str) -> tuple[str, pd.DataFrame]:
|
31 |
-
# Получаем вопросы
|
32 |
questions_data = self._fetch_questions()
|
33 |
-
if isinstance(questions_data,
|
34 |
-
return questions_data,
|
35 |
|
36 |
-
# Запускаем агента на всех вопросах
|
37 |
results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
|
38 |
if not answers_payload:
|
39 |
-
return "
|
40 |
|
41 |
-
# Отправляем ответы
|
42 |
submission_result = self._submit_answers(username, agent_code, answers_payload)
|
43 |
-
|
44 |
-
# Проверяем результаты
|
45 |
-
self._check_results(username)
|
46 |
-
self.print_evaluation_summary(username)
|
47 |
-
|
48 |
return submission_result, pd.DataFrame(results_log)
|
49 |
|
50 |
-
def _fetch_questions(self)
|
51 |
try:
|
52 |
-
response = requests.get(self.questions_url, timeout=
|
53 |
response.raise_for_status()
|
54 |
questions_data = response.json()
|
55 |
-
|
56 |
-
if not questions_data:
|
57 |
-
return "Fetched questions list is empty or invalid format."
|
58 |
-
|
59 |
self.total_questions = len(questions_data)
|
60 |
-
print(f"
|
61 |
return questions_data
|
62 |
-
|
63 |
except Exception as e:
|
64 |
-
return f"Error
|
65 |
|
66 |
-
def _run_agent_on_questions(self,
|
67 |
-
agent: Any,
|
68 |
-
questions_data: List[Dict[str, Any]]) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
|
69 |
results_log = []
|
70 |
answers_payload = []
|
71 |
|
72 |
-
print(f"
|
73 |
-
for item in questions_data:
|
74 |
task_id = item.get("task_id")
|
75 |
question_text = item.get("question")
|
76 |
|
77 |
-
if not task_id or question_text
|
78 |
continue
|
79 |
|
80 |
try:
|
81 |
json_response = agent(question_text, task_id)
|
82 |
response_obj = json.loads(json_response)
|
83 |
-
|
84 |
-
|
85 |
-
answers_payload.append({
|
86 |
-
"task_id": task_id,
|
87 |
-
"submitted_answer": submitted_answer
|
88 |
-
})
|
89 |
|
|
|
90 |
results_log.append({
|
91 |
-
"Task ID": task_id,
|
92 |
-
"Question": question_text,
|
93 |
-
"
|
94 |
-
"Full Response": json_response
|
95 |
})
|
96 |
except Exception as e:
|
|
|
97 |
results_log.append({
|
98 |
-
"Task ID": task_id,
|
99 |
-
"Question": question_text,
|
100 |
-
"
|
101 |
})
|
102 |
|
103 |
return results_log, answers_payload
|
104 |
|
105 |
-
def _submit_answers(self,
|
106 |
-
username: str,
|
107 |
-
agent_code: str,
|
108 |
-
answers_payload: List[Dict[str, Any]]) -> str:
|
109 |
submission_data = {
|
110 |
"username": username.strip(),
|
111 |
-
"agent_code": agent_code.strip(),
|
112 |
"answers": answers_payload
|
113 |
}
|
114 |
|
115 |
-
print(
|
116 |
-
print("Submission data:", json.dumps(submission_data, indent=2))
|
117 |
-
|
118 |
-
for attempt in range(1, MAX_RETRIES + 1):
|
119 |
-
try:
|
120 |
-
response = requests.post(
|
121 |
-
self.submit_url,
|
122 |
-
json=submission_data,
|
123 |
-
headers={"Content-Type": "application/json"},
|
124 |
-
timeout=30
|
125 |
-
)
|
126 |
-
response.raise_for_status()
|
127 |
-
|
128 |
-
try:
|
129 |
-
result = response.json()
|
130 |
-
if "message" in result:
|
131 |
-
return result["message"]
|
132 |
-
return "Evaluation submitted successfully"
|
133 |
-
except:
|
134 |
-
return f"Submission successful, but response was not JSON: {response.text}"
|
135 |
-
|
136 |
-
except Exception as e:
|
137 |
-
print(f"Submission attempt {attempt} failed: {e}")
|
138 |
-
time.sleep(RETRY_DELAY)
|
139 |
-
|
140 |
-
return "Error submitting answers after multiple attempts"
|
141 |
-
|
142 |
-
def _check_results(self, username: str) -> None:
|
143 |
try:
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
150 |
except Exception as e:
|
151 |
-
|
152 |
-
|
153 |
-
def get_correct_answers_count(self) -> int:
|
154 |
-
return self.correct_answers
|
155 |
-
|
156 |
-
def get_total_questions_count(self) -> int:
|
157 |
-
return self.total_questions
|
158 |
-
|
159 |
-
def print_evaluation_summary(self, username: str) -> None:
|
160 |
-
print("\n===== EVALUATION SUMMARY =====")
|
161 |
-
print(f"User: {username}")
|
162 |
-
print(f"Overall Score: {self.correct_answers}/{self.total_questions}")
|
163 |
-
print("=============================\n")
|
164 |
|
165 |
|
166 |
-
def run_evaluation(username: str,
|
167 |
-
|
168 |
-
|
169 |
-
use_cache: bool = False) -> Tuple[str, int, int, str, str, str]: # Кэш отключен по умолчанию
|
170 |
-
start_time = time.time()
|
171 |
-
|
172 |
-
# Инициализируем агента
|
173 |
-
agent = EnhancedGAIAAgent(model_name=model_name, use_cache=use_cache)
|
174 |
-
|
175 |
-
# Инициализируем runner
|
176 |
-
runner = EvaluationRunner(api_url=DEFAULT_API_URL)
|
177 |
|
178 |
-
|
179 |
-
|
|
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
-
|
184 |
|
185 |
-
|
186 |
-
results_url = f"{DEFAULT_API_URL}/results?username={username}"
|
187 |
-
cache_status = "Cache enabled and used" if use_cache else "Cache disabled"
|
188 |
-
|
189 |
-
return (
|
190 |
-
result,
|
191 |
-
runner.get_correct_answers_count(),
|
192 |
-
runner.get_total_questions_count(),
|
193 |
-
elapsed_time_str,
|
194 |
-
results_url,
|
195 |
-
cache_status
|
196 |
-
)
|
197 |
|
198 |
|
199 |
def create_gradio_interface():
|
200 |
-
with gr.Blocks(title="GAIA Agent
|
201 |
-
gr.Markdown("# GAIA Agent Evaluation")
|
202 |
|
203 |
with gr.Row():
|
204 |
with gr.Column():
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
207 |
model_name = gr.Dropdown(
|
208 |
label="Model",
|
209 |
-
choices=[
|
210 |
-
|
|
|
|
|
|
|
|
|
211 |
)
|
212 |
-
|
213 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
214 |
|
215 |
with gr.Column():
|
216 |
-
|
|
|
217 |
correct_answers = gr.Number(label="Correct Answers")
|
218 |
total_questions = gr.Number(label="Total Questions")
|
219 |
-
|
220 |
-
results_url = gr.Textbox(label="Results URL")
|
221 |
-
cache_status = gr.Textbox(label="Cache Status")
|
222 |
|
223 |
run_button.click(
|
224 |
fn=run_evaluation,
|
225 |
-
inputs=[username, agent_code, model_name
|
226 |
-
outputs=[
|
227 |
-
result_text,
|
228 |
-
correct_answers,
|
229 |
-
total_questions,
|
230 |
-
elapsed_time,
|
231 |
-
results_url,
|
232 |
-
cache_status
|
233 |
-
]
|
234 |
)
|
235 |
|
236 |
return demo
|
@@ -238,4 +153,4 @@ def create_gradio_interface():
|
|
238 |
|
239 |
if __name__ == "__main__":
|
240 |
demo = create_gradio_interface()
|
241 |
-
demo.launch(
|
|
|
|
|
1 |
import json
|
2 |
import time
|
|
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
+
from tqdm import tqdm
|
7 |
+
from agent import GAIAExpertAgent
|
8 |
|
9 |
# Константы
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
11 |
|
12 |
class EvaluationRunner:
|
13 |
+
"""Оптимизированный обработчик оценки"""
|
14 |
|
15 |
def __init__(self, api_url=DEFAULT_API_URL):
|
16 |
self.api_url = api_url
|
|
|
20 |
self.correct_answers = 0
|
21 |
self.total_questions = 0
|
22 |
|
23 |
+
def run_evaluation(self, agent, username: str, agent_code: str) -> Tuple[str, pd.DataFrame]:
|
|
|
|
|
|
|
|
|
24 |
questions_data = self._fetch_questions()
|
25 |
+
if not isinstance(questions_data, list):
|
26 |
+
return questions_data, pd.DataFrame()
|
27 |
|
|
|
28 |
results_log, answers_payload = self._run_agent_on_questions(agent, questions_data)
|
29 |
if not answers_payload:
|
30 |
+
return "No answers generated", pd.DataFrame()
|
31 |
|
|
|
32 |
submission_result = self._submit_answers(username, agent_code, answers_payload)
|
|
|
|
|
|
|
|
|
|
|
33 |
return submission_result, pd.DataFrame(results_log)
|
34 |
|
35 |
+
def _fetch_questions(self):
|
36 |
try:
|
37 |
+
response = requests.get(self.questions_url, timeout=30)
|
38 |
response.raise_for_status()
|
39 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
40 |
self.total_questions = len(questions_data)
|
41 |
+
print(f"Fetched {self.total_questions} questions")
|
42 |
return questions_data
|
|
|
43 |
except Exception as e:
|
44 |
+
return f"Error: {str(e)}"
|
45 |
|
46 |
+
def _run_agent_on_questions(self, agent, questions_data):
|
|
|
|
|
47 |
results_log = []
|
48 |
answers_payload = []
|
49 |
|
50 |
+
print(f"Processing {len(questions_data)} questions...")
|
51 |
+
for item in tqdm(questions_data, desc="Questions"):
|
52 |
task_id = item.get("task_id")
|
53 |
question_text = item.get("question")
|
54 |
|
55 |
+
if not task_id or not question_text:
|
56 |
continue
|
57 |
|
58 |
try:
|
59 |
json_response = agent(question_text, task_id)
|
60 |
response_obj = json.loads(json_response)
|
61 |
+
answer = response_obj.get("final_answer", "")
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
64 |
results_log.append({
|
65 |
+
"Task ID": task_id,
|
66 |
+
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
67 |
+
"Answer": answer[:50] + "..." if len(answer) > 50 else answer
|
|
|
68 |
})
|
69 |
except Exception as e:
|
70 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": f"ERROR: {str(e)}"})
|
71 |
results_log.append({
|
72 |
+
"Task ID": task_id,
|
73 |
+
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
74 |
+
"Answer": f"ERROR: {str(e)}"
|
75 |
})
|
76 |
|
77 |
return results_log, answers_payload
|
78 |
|
79 |
+
def _submit_answers(self, username: str, agent_code: str, answers_payload):
|
|
|
|
|
|
|
80 |
submission_data = {
|
81 |
"username": username.strip(),
|
82 |
+
"agent_code": agent_code.strip(),
|
83 |
"answers": answers_payload
|
84 |
}
|
85 |
|
86 |
+
print("Submitting answers...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
try:
|
88 |
+
response = requests.post(
|
89 |
+
self.submit_url,
|
90 |
+
json=submission_data,
|
91 |
+
headers={"Content-Type": "application/json"},
|
92 |
+
timeout=60
|
93 |
+
)
|
94 |
+
response.raise_for_status()
|
95 |
+
return response.json().get("message", "Answers submitted successfully")
|
96 |
except Exception as e:
|
97 |
+
return f"Submission failed: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
+
def run_evaluation(username: str, agent_code: str, model_name: str):
|
101 |
+
print("Initializing GAIA Expert Agent...")
|
102 |
+
agent = GAIAExpertAgent(model_name=model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
print("Starting evaluation...")
|
105 |
+
runner = EvaluationRunner()
|
106 |
+
result, results_df = runner.run_evaluation(agent, username, agent_code)
|
107 |
|
108 |
+
# Добавляем счетчики вопросов
|
109 |
+
total_questions = runner.total_questions
|
110 |
+
correct_answers = runner.correct_answers if hasattr(runner, 'correct_answers') else 0
|
111 |
|
112 |
+
return result, correct_answers, total_questions, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
|
115 |
def create_gradio_interface():
|
116 |
+
with gr.Blocks(title="GAIA Expert Agent") as demo:
|
117 |
+
gr.Markdown("# 🧠 GAIA Expert Agent Evaluation")
|
118 |
|
119 |
with gr.Row():
|
120 |
with gr.Column():
|
121 |
+
gr.Markdown("### Configuration")
|
122 |
+
username = gr.Textbox(label="Hugging Face Username", value="yoshizen")
|
123 |
+
agent_code = gr.Textbox(
|
124 |
+
label="Agent Code",
|
125 |
+
value="https://huggingface.co/spaces/yoshizen/FinalTest"
|
126 |
+
)
|
127 |
model_name = gr.Dropdown(
|
128 |
label="Model",
|
129 |
+
choices=[
|
130 |
+
"google/flan-t5-small",
|
131 |
+
"google/flan-t5-base",
|
132 |
+
"google/flan-t5-large"
|
133 |
+
],
|
134 |
+
value="google/flan-t5-large"
|
135 |
)
|
136 |
+
run_button = gr.Button("🚀 Run Evaluation", variant="primary")
|
|
|
137 |
|
138 |
with gr.Column():
|
139 |
+
gr.Markdown("### Results")
|
140 |
+
result_text = gr.Textbox(label="Submission Status")
|
141 |
correct_answers = gr.Number(label="Correct Answers")
|
142 |
total_questions = gr.Number(label="Total Questions")
|
143 |
+
results_table = gr.Dataframe(label="Processed Questions", interactive=False)
|
|
|
|
|
144 |
|
145 |
run_button.click(
|
146 |
fn=run_evaluation,
|
147 |
+
inputs=[username, agent_code, model_name],
|
148 |
+
outputs=[result_text, correct_answers, total_questions, results_table]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
)
|
150 |
|
151 |
return demo
|
|
|
153 |
|
154 |
if __name__ == "__main__":
|
155 |
demo = create_gradio_interface()
|
156 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|