File size: 4,109 Bytes
5f52527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import re
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification
import dateparser
from datetime import datetime
import spacy

app = FastAPI()

# Load classification and summarization models
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")

# Load Indic NER (or any general one)
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")

# Labels for classification
labels = [
  "task", "event", "reminder", "meeting", "relationship", "note", "journal", "memory", "status_update",
  "sick_notice", "out_of_office", "travel_plan", "celebration", "emotion", "other"
]

class TextInput(BaseModel):
    text: str

def extract_dates(text):
    time_expressions = re.findall(
        r'\b(kal|aaj|parso|raat|subah|shaam|dopahar|[0-9]{1,2} baje|next week|tomorrow|today|yesterday|Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday|[\d]{1,2}/[\d]{1,2}/[\d]{2,4})\b',
        text, flags=re.IGNORECASE)
    parsed = [str(dateparser.parse(t)) for t in time_expressions if dateparser.parse(t)]
    return list(set(parsed)), list(set(time_expressions))

def detect_tense(parsed_dates):
    now = datetime.now()
    tenses = set()
    for d in parsed_dates:
        dt = dateparser.parse(d)
        if not dt:
            continue
        if dt < now:
            tenses.add("past")
        elif dt > now:
            tenses.add("future")
        else:
            tenses.add("present")
    return list(tenses) if tenses else ["unknown"]

def generate_summary(text):
    input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids
    output_ids = summarizer_model.generate(input_ids, max_length=60, num_beams=4, early_stopping=True)
    return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True)


def extract_people(text):
    ner_results = ner_pipeline(text)
    return list(set(ent['word'] for ent in ner_results if ent['entity_group'] == 'PER'))

def estimate_mood(text):
    text_lower = text.lower()
    mood_map = {
        "happy": ["happy", "excited", "joy", "grateful"],
        "sad": ["sad", "upset", "crying", "lonely"],
        "angry": ["angry", "annoyed", "frustrated", "irritated"],
        "nervous": ["nervous", "anxious", "scared"],
        "unwell": ["sick", "unwell", "not feeling well", "fever", "cold", "headache"],
        "neutral": []
    }

    for mood, keywords in mood_map.items():
        for kw in keywords:
            if kw in text_lower:
                return mood
    return "neutral"

def generate_tags(label, text):
    base_tags = [label]
    keywords = re.findall(r'\b[a-zA-Z]{4,}\b', text.lower())
    force_tags = []

    if any(w in text.lower() for w in ["sick", "unwell", "not feeling well", "fever"]):
        force_tags += ["sick", "leave"]
    if "work" in text.lower():
        force_tags.append("work")

    return list(set(base_tags + force_tags + keywords))


@app.post("/analyze")
async def analyze(input: TextInput):
    text = input.text

    classification = classifier(text, labels)
    best_label = classification['labels'][0]
    scores = dict(zip(classification['labels'], classification['scores']))

    parsed_dates, time_mentions = extract_dates(text)
    tenses = detect_tense(parsed_dates)
    summary = generate_summary(text)
    people = extract_people(text)
    mood = estimate_mood(text)
    tags = generate_tags(best_label, text)

    return {
        "type": best_label,
        "confidence_scores": scores,
        "time_mentions": time_mentions,
        "parsed_dates": parsed_dates,
        "tense": tenses,
        "summary": summary,
        "people": people,
        "mood": mood,
        "tags": tags
    }