youssefboutaleb commited on
Commit
56d287e
·
1 Parent(s): 7d72abd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -12
app.py CHANGED
@@ -2,17 +2,10 @@ import gradio as gr
2
 
3
  from ultralytics import YOLO
4
  model = YOLO('./best.pt') # load your custom trained model
5
-
6
  import torch
7
- from ultralyticsplus import render_result
 
8
 
9
- torch.hub.download_url_to_file(
10
- 'https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftexashafts.com%2Fwp-content%2Fuploads%2F2016%2F04%2Fconstruction-worker.jpg',
11
- 'one.jpg')
12
- torch.hub.download_url_to_file(
13
- 'https://www.pearsonkoutcherlaw.com/wp-content/uploads/2020/06/Construction-Workers.jpg', 'two.jpg')
14
- torch.hub.download_url_to_file(
15
- 'https://nssgroup.com/wp-content/uploads/2019/02/Building-maintenance-blog.jpg', 'three.jpg')
16
 
17
 
18
  def yoloV8_func(image: gr.Image = None,
@@ -44,7 +37,7 @@ def yoloV8_func(image: gr.Image = None,
44
  print("Probability:", box.conf)
45
 
46
  # Render the output image with bounding boxes around detected objects
47
- render = render_result(model=model, image=image, result=results[0])
48
  return render
49
 
50
 
@@ -57,7 +50,7 @@ inputs = [
57
 
58
  outputs = gr.Image(type="filepath", label="Output Image")
59
 
60
- title = "YOLOv8 101: Custom Object Detection on Construction Workers"
61
 
62
  examples = [['img1.jpg', 640, 0.5, 0.7],
63
  ['img2.jpg', 800, 0.5, 0.6],
@@ -73,4 +66,5 @@ yolo_app = gr.Interface(
73
  )
74
 
75
  # Launch the Gradio interface in debug mode with queue enabled
76
- yolo_app.launch(debug=True, share=True).queue()
 
 
2
 
3
  from ultralytics import YOLO
4
  model = YOLO('./best.pt') # load your custom trained model
 
5
  import torch
6
+ #from ultralyticsplus import render_result
7
+ from render import custom_render_result
8
 
 
 
 
 
 
 
 
9
 
10
 
11
  def yoloV8_func(image: gr.Image = None,
 
37
  print("Probability:", box.conf)
38
 
39
  # Render the output image with bounding boxes around detected objects
40
+ render = custom_render_result(model=model, image=image, result=results[0])
41
  return render
42
 
43
 
 
50
 
51
  outputs = gr.Image(type="filepath", label="Output Image")
52
 
53
+ title = "YOLOv8 101: Custom Object Detection on meter"
54
 
55
  examples = [['img1.jpg', 640, 0.5, 0.7],
56
  ['img2.jpg', 800, 0.5, 0.6],
 
66
  )
67
 
68
  # Launch the Gradio interface in debug mode with queue enabled
69
+ yolo_app.launch(debug=True).queue()
70
+