Spaces:
Runtime error
Runtime error
Commit
·
b08e5f0
1
Parent(s):
5eeb136
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
3 |
from ultralyticsplus import YOLO, render_result
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
#torch.hub.download_url_to_file("img1.jpg", 'one.jpg')
|
7 |
-
#torch.hub.download_url_to_file("img2.jpg", 'two.jpg')
|
8 |
-
#torch.hub.download_url_to_file("img3.jpg", 'three.jpg')
|
9 |
|
10 |
def yoloV8_func(image: gr.Image = None,
|
11 |
-
image_size:
|
12 |
-
conf_threshold:
|
13 |
-
iou_threshold:
|
14 |
"""This function performs YOLOv8 object detection on the given image.
|
15 |
|
16 |
Args:
|
17 |
-
image (gr.
|
18 |
-
image_size (
|
19 |
-
conf_threshold (
|
20 |
-
iou_threshold (
|
21 |
"""
|
22 |
# Load the YOLOv8 model from the 'best.pt' checkpoint
|
23 |
-
model_path = "best.pt"
|
24 |
model = YOLO(model_path)
|
25 |
|
26 |
# Perform object detection on the input image using the YOLOv8 model
|
@@ -38,39 +43,31 @@ def yoloV8_func(image: gr.Image = None,
|
|
38 |
# Render the output image with bounding boxes around detected objects
|
39 |
render = render_result(model=model, image=image, result=results[0])
|
40 |
return render
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
inputs = [
|
45 |
gr.Image(type="filepath", label="Input Image"),
|
46 |
-
gr.Slider(minimum=320, maximum=1280,
|
47 |
-
|
48 |
-
gr.Slider(minimum=0.0, maximum=1.0,
|
49 |
-
step=0.05, label="Confidence Threshold"),
|
50 |
-
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, # Changed 'default' to 'value'
|
51 |
-
step=0.05, label="IOU Threshold"),
|
52 |
]
|
53 |
|
54 |
|
55 |
|
56 |
-
|
57 |
-
|
58 |
|
59 |
title = "YOLOv8 101: Custom Object Detection on Construction Workers"
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
['
|
64 |
-
['img3.jpg', 900, 0.5, 0.8]]
|
65 |
|
66 |
yolo_app = gr.Interface(
|
67 |
fn=yoloV8_func,
|
68 |
inputs=inputs,
|
69 |
-
outputs=
|
70 |
title=title,
|
71 |
examples=examples,
|
72 |
-
cache_examples=
|
73 |
)
|
74 |
|
75 |
# Launch the Gradio interface in debug mode with queue enabled
|
76 |
-
yolo_app.launch(debug=True
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
|
4 |
+
import torch
|
5 |
from ultralyticsplus import YOLO, render_result
|
6 |
|
7 |
+
torch.hub.download_url_to_file(
|
8 |
+
'https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftexashafts.com%2Fwp-content%2Fuploads%2F2016%2F04%2Fconstruction-worker.jpg', 'one.jpg')
|
9 |
+
torch.hub.download_url_to_file(
|
10 |
+
'https://www.pearsonkoutcherlaw.com/wp-content/uploads/2020/06/Construction-Workers.jpg', 'two.jpg')
|
11 |
+
torch.hub.download_url_to_file(
|
12 |
+
'https://nssgroup.com/wp-content/uploads/2019/02/Building-maintenance-blog.jpg', 'three.jpg')
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
def yoloV8_func(image: gr.Image = None,
|
16 |
+
image_size: int = 640,
|
17 |
+
conf_threshold: float = 0.4,
|
18 |
+
iou_threshold: float = 0.5):
|
19 |
"""This function performs YOLOv8 object detection on the given image.
|
20 |
|
21 |
Args:
|
22 |
+
image (gr.Image, optional): Input image to detect objects on. Defaults to None.
|
23 |
+
image_size (int, optional): Desired image size for the model. Defaults to 640.
|
24 |
+
conf_threshold (float, optional): Confidence threshold for object detection. Defaults to 0.4.
|
25 |
+
iou_threshold (float, optional): Intersection over Union threshold for object detection. Defaults to 0.50.
|
26 |
"""
|
27 |
# Load the YOLOv8 model from the 'best.pt' checkpoint
|
28 |
+
model_path = "./best.pt.pt"
|
29 |
model = YOLO(model_path)
|
30 |
|
31 |
# Perform object detection on the input image using the YOLOv8 model
|
|
|
43 |
# Render the output image with bounding boxes around detected objects
|
44 |
render = render_result(model=model, image=image, result=results[0])
|
45 |
return render
|
|
|
|
|
|
|
46 |
inputs = [
|
47 |
gr.Image(type="filepath", label="Input Image"),
|
48 |
+
gr.Slider(minimum=320, maximum=1280, step=32, label="Image Size", value=640),
|
49 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label="Confidence Threshold"),
|
50 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label="IOU Threshold"),
|
|
|
|
|
|
|
51 |
]
|
52 |
|
53 |
|
54 |
|
55 |
+
outputs = gr.Image(type="filepath", label="Output Image")
|
|
|
56 |
|
57 |
title = "YOLOv8 101: Custom Object Detection on Construction Workers"
|
58 |
|
59 |
+
examples = [['one.jpg', 640, 0.5, 0.7],
|
60 |
+
['two.jpg', 800, 0.5, 0.6],
|
61 |
+
['three.jpg', 900, 0.5, 0.8]]
|
|
|
62 |
|
63 |
yolo_app = gr.Interface(
|
64 |
fn=yoloV8_func,
|
65 |
inputs=inputs,
|
66 |
+
outputs=outputs,
|
67 |
title=title,
|
68 |
examples=examples,
|
69 |
+
cache_examples=False,
|
70 |
)
|
71 |
|
72 |
# Launch the Gradio interface in debug mode with queue enabled
|
73 |
+
yolo_app.launch(debug=True).queue()
|