yoyolicoris commited on
Commit
d9872f2
·
1 Parent(s): 985b6b3

refactor: download presets and modules from dataset repo at runtime

Browse files
.gitignore CHANGED
@@ -1,2 +1,4 @@
1
  .vscode/*
2
- *.pyc
 
 
 
1
  .vscode/*
2
+ *.pyc
3
+ presets/*
4
+ modules/*
app.py CHANGED
@@ -13,6 +13,16 @@ from functools import partial, reduce
13
  from itertools import accumulate
14
  from torchcomp import coef2ms, ms2coef
15
  from copy import deepcopy
 
 
 
 
 
 
 
 
 
 
16
 
17
  from modules.utils import vec2statedict, get_chunks
18
  from modules.fx import clip_delay_eq_Q
 
13
  from itertools import accumulate
14
  from torchcomp import coef2ms, ms2coef
15
  from copy import deepcopy
16
+ from huggingface_hub import snapshot_download
17
+
18
+ preset_path = snapshot_download(
19
+ "yoyolicoris/diffvox",
20
+ repo_type="dataset",
21
+ local_dir="./",
22
+ local_files_only=False,
23
+ allow_patterns=["presets/*", "modules/*"],
24
+ )
25
+
26
 
27
  from modules.utils import vec2statedict, get_chunks
28
  from modules.fx import clip_delay_eq_Q
modules/functional.py DELETED
@@ -1,229 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- from torchcomp import compexp_gain, db2amp
4
- from torchlpc import sample_wise_lpc
5
- from typing import List, Tuple, Union, Any, Optional
6
- import math
7
-
8
-
9
- def inv_22(a, b, c, d):
10
- return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c)
11
-
12
-
13
- def eig_22(a, b, c, d):
14
- # https://croninprojects.org/Vince/Geodesy/FindingEigenvectors.pdf
15
- T = a + d
16
- D = a * d - b * c
17
- half_T = T * 0.5
18
- root = torch.sqrt(half_T * half_T - D) # + 0j)
19
- L = torch.stack([half_T + root, half_T - root])
20
-
21
- y = (L - a) / b
22
- # y = c / L
23
- V = torch.stack([torch.ones_like(y), y])
24
- return L, V / V.abs().square().sum(0).sqrt()
25
-
26
-
27
- def fir(x, b):
28
- padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0))
29
- return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape)
30
-
31
-
32
- def allpole(x: torch.Tensor, a: torch.Tensor):
33
- h = x.reshape(-1, x.shape[-1])
34
- return sample_wise_lpc(
35
- h,
36
- a.broadcast_to(h.shape + a.shape),
37
- ).reshape(*x.shape)
38
-
39
-
40
- def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2):
41
- b0 = b0 / a0
42
- b1 = b1 / a0
43
- b2 = b2 / a0
44
- a1 = a1 / a0
45
- a2 = a2 / a0
46
-
47
- beta1 = b1 - b0 * a1
48
- beta2 = b2 - b0 * a2
49
-
50
- tmp = a1.square() - 4 * a2
51
- if tmp < 0:
52
- pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp))
53
- u = -1j * x[..., :-1]
54
- h = sample_wise_lpc(
55
- u.reshape(-1, u.shape[-1]),
56
- -pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1),
57
- ).reshape(*u.shape)
58
- h = (
59
- h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag)
60
- - beta1 * h.imag
61
- )
62
- else:
63
- L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1))
64
- inv_V = inv_22(*V.view(-1))
65
-
66
- C = torch.stack([beta1, beta2]) @ V
67
-
68
- # project input to eigen space
69
- h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1]
70
- L = L.unsqueeze(-1).broadcast_to(h.shape)
71
-
72
- h = (
73
- sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1))
74
- .reshape(*h.shape)
75
- .transpose(-2, -1)
76
- ) @ C
77
- tmp = b0 * x
78
- y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1)
79
- return y
80
-
81
-
82
- def highpass_biquad_coef(
83
- sample_rate: int,
84
- cutoff_freq: torch.Tensor,
85
- Q: torch.Tensor,
86
- ):
87
- w0 = 2 * torch.pi * cutoff_freq / sample_rate
88
- alpha = torch.sin(w0) / 2.0 / Q
89
-
90
- b0 = (1 + torch.cos(w0)) / 2
91
- b1 = -1 - torch.cos(w0)
92
- b2 = b0
93
- a0 = 1 + alpha
94
- a1 = -2 * torch.cos(w0)
95
- a2 = 1 - alpha
96
- return b0, b1, b2, a0, a1, a2
97
-
98
-
99
- def apply_biquad(bq):
100
- return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs))
101
-
102
-
103
- highpass_biquad = apply_biquad(highpass_biquad_coef)
104
-
105
-
106
- def lowpass_biquad_coef(
107
- sample_rate: int,
108
- cutoff_freq: torch.Tensor,
109
- Q: torch.Tensor,
110
- ):
111
- w0 = 2 * torch.pi * cutoff_freq / sample_rate
112
- alpha = torch.sin(w0) / 2 / Q
113
-
114
- b0 = (1 - torch.cos(w0)) / 2
115
- b1 = 1 - torch.cos(w0)
116
- b2 = b0
117
- a0 = 1 + alpha
118
- a1 = -2 * torch.cos(w0)
119
- a2 = 1 - alpha
120
- return b0, b1, b2, a0, a1, a2
121
-
122
-
123
- def equalizer_biquad_coef(
124
- sample_rate: int,
125
- center_freq: torch.Tensor,
126
- gain: torch.Tensor,
127
- Q: torch.Tensor,
128
- ):
129
-
130
- w0 = 2 * torch.pi * center_freq / sample_rate
131
- A = torch.exp(gain / 40.0 * math.log(10))
132
- alpha = torch.sin(w0) / 2 / Q
133
-
134
- b0 = 1 + alpha * A
135
- b1 = -2 * torch.cos(w0)
136
- b2 = 1 - alpha * A
137
-
138
- a0 = 1 + alpha / A
139
- a1 = -2 * torch.cos(w0)
140
- a2 = 1 - alpha / A
141
- return b0, b1, b2, a0, a1, a2
142
-
143
-
144
- def lowshelf_biquad_coef(
145
- sample_rate: int,
146
- cutoff_freq: torch.Tensor,
147
- gain: torch.Tensor,
148
- Q: torch.Tensor,
149
- ):
150
-
151
- w0 = 2 * torch.pi * cutoff_freq / sample_rate
152
- A = torch.exp(gain / 40.0 * math.log(10))
153
- alpha = torch.sin(w0) / 2 / Q
154
- cosw0 = torch.cos(w0)
155
- sqrtA = torch.sqrt(A)
156
-
157
- b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA)
158
- b1 = 2 * A * (A - 1 - (A + 1) * cosw0)
159
- b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA)
160
-
161
- a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA
162
- a1 = -2 * (A - 1 + (A + 1) * cosw0)
163
- a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA
164
-
165
- return b0, b1, b2, a0, a1, a2
166
-
167
-
168
- def highshelf_biquad_coef(
169
- sample_rate: int,
170
- cutoff_freq: torch.Tensor,
171
- gain: torch.Tensor,
172
- Q: torch.Tensor,
173
- ):
174
-
175
- w0 = 2 * torch.pi * cutoff_freq / sample_rate
176
- A = torch.exp(gain / 40.0 * math.log(10))
177
- alpha = torch.sin(w0) / 2 / Q
178
- cosw0 = torch.cos(w0)
179
- sqrtA = torch.sqrt(A)
180
-
181
- b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA)
182
- b1 = -2 * A * (A - 1 + (A + 1) * cosw0)
183
- b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA)
184
-
185
- a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA
186
- a1 = 2 * (A - 1 - (A + 1) * cosw0)
187
- a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA
188
-
189
- return b0, b1, b2, a0, a1, a2
190
-
191
-
192
- highpass_biquad = apply_biquad(highpass_biquad_coef)
193
- lowpass_biquad = apply_biquad(lowpass_biquad_coef)
194
- highshelf_biquad = apply_biquad(highshelf_biquad_coef)
195
- lowshelf_biquad = apply_biquad(lowshelf_biquad_coef)
196
- equalizer_biquad = apply_biquad(equalizer_biquad_coef)
197
-
198
-
199
- def avg(rms: torch.Tensor, avg_coef: torch.Tensor):
200
- assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1)
201
-
202
- h = rms * avg_coef
203
-
204
- return sample_wise_lpc(
205
- h,
206
- (avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1),
207
- )
208
-
209
-
210
- def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor:
211
- return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt()
212
-
213
-
214
- def compressor_expander(
215
- x: torch.Tensor,
216
- avg_coef: Union[torch.Tensor, float],
217
- cmp_th: Union[torch.Tensor, float],
218
- cmp_ratio: Union[torch.Tensor, float],
219
- exp_th: Union[torch.Tensor, float],
220
- exp_ratio: Union[torch.Tensor, float],
221
- at: Union[torch.Tensor, float],
222
- rt: Union[torch.Tensor, float],
223
- make_up: torch.Tensor,
224
- lookahead_func=lambda x: x,
225
- ):
226
- rms = avg_rms(x, avg_coef=avg_coef)
227
- gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt)
228
- gain = lookahead_func(gain)
229
- return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modules/fx.py DELETED
@@ -1,1061 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
- from torch.nn.utils.parametrize import register_parametrization
5
- from torchcomp import ms2coef, coef2ms, db2amp, amp2db
6
- from torchaudio.transforms import Spectrogram, InverseSpectrogram
7
-
8
- from typing import List, Tuple, Union, Any, Optional, Callable
9
- import math
10
- from torch_fftconv import fft_conv1d
11
- from functools import reduce
12
-
13
- from .functional import (
14
- compressor_expander,
15
- lowpass_biquad,
16
- highpass_biquad,
17
- equalizer_biquad,
18
- lowshelf_biquad,
19
- highshelf_biquad,
20
- lowpass_biquad_coef,
21
- highpass_biquad_coef,
22
- highshelf_biquad_coef,
23
- lowshelf_biquad_coef,
24
- equalizer_biquad_coef,
25
- )
26
- from .utils import chain_functions
27
-
28
-
29
- class Clip(nn.Module):
30
- def __init__(self, max: Optional[float] = None, min: Optional[float] = None):
31
- super().__init__()
32
- self.min = min
33
- self.max = max
34
-
35
- def forward(self, x):
36
- if self.min is not None:
37
- x = torch.clip(x, min=self.min)
38
- if self.max is not None:
39
- x = torch.clip(x, max=self.max)
40
- return x
41
-
42
-
43
- def clip_delay_eq_Q(m: nn.Module, Q: float):
44
- if isinstance(m, Delay) and isinstance(m.eq, LowPass):
45
- register_parametrization(m.eq.params, "Q", Clip(max=Q))
46
- return m
47
-
48
-
49
- float2param = lambda x: nn.Parameter(
50
- torch.tensor(x, dtype=torch.float32) if not isinstance(x, torch.Tensor) else x
51
- )
52
-
53
- STEREO_NORM = math.sqrt(2)
54
-
55
-
56
- def broadcast2stereo(m, args):
57
- x, *_ = args
58
- return x.expand(-1, 2, -1) if x.shape[1] == 1 else x
59
-
60
-
61
- hadamard = lambda x: torch.stack([x.sum(1), x[:, 0] - x[:, 1]], 1) / STEREO_NORM
62
-
63
-
64
- class Hadamard(nn.Module):
65
- def forward(self, x):
66
- return hadamard(x)
67
-
68
-
69
- class FX(nn.Module):
70
- def __init__(self, **kwargs) -> None:
71
- super().__init__()
72
-
73
- self.params = nn.ParameterDict({k: float2param(v) for k, v in kwargs.items()})
74
-
75
- def toJSON(self) -> dict[str, Any]:
76
- return {k: v.item() for k, v in self.params.items() if v.numel() == 1}
77
-
78
-
79
- class SmoothingCoef(nn.Module):
80
- def forward(self, x):
81
- return x.sigmoid()
82
-
83
- def right_inverse(self, y):
84
- return (y / (1 - y)).log()
85
-
86
-
87
- class CompRatio(nn.Module):
88
- def forward(self, x):
89
- return x.exp() + 1
90
-
91
- def right_inverse(self, y):
92
- return torch.log(y - 1)
93
-
94
-
95
- class MinMax(nn.Module):
96
- def __init__(self, min=0.0, max: Union[float, torch.Tensor] = 1.0):
97
- super().__init__()
98
- if isinstance(min, torch.Tensor):
99
- self.register_buffer("min", min, persistent=False)
100
- else:
101
- self.min = min
102
-
103
- if isinstance(max, torch.Tensor):
104
- self.register_buffer("max", max, persistent=False)
105
- else:
106
- self.max = max
107
-
108
- self._m = SmoothingCoef()
109
-
110
- def forward(self, x):
111
- return self._m(x) * (self.max - self.min) + self.min
112
-
113
- def right_inverse(self, y):
114
- return self._m.right_inverse((y - self.min) / (self.max - self.min))
115
-
116
-
117
- class WrappedPositive(nn.Module):
118
- def __init__(self, period):
119
- super().__init__()
120
- self.period = period
121
-
122
- def forward(self, x):
123
- return x.abs() % self.period
124
-
125
- def right_inverse(self, y):
126
- return y
127
-
128
-
129
- class CompressorExpander(FX):
130
- cmp_ratio_min: float = 1
131
- cmp_ratio_max: float = 20
132
-
133
- def __init__(
134
- self,
135
- sr: int,
136
- cmp_ratio: float = 2.0,
137
- exp_ratio: float = 0.5,
138
- at_ms: float = 50.0,
139
- rt_ms: float = 50.0,
140
- avg_coef: float = 0.3,
141
- cmp_th: float = -18.0,
142
- exp_th: float = -54.0,
143
- make_up: float = 0.0,
144
- delay: int = 0,
145
- lookahead: bool = False,
146
- max_lookahead: float = 15.0,
147
- ):
148
- super().__init__(
149
- cmp_th=cmp_th,
150
- exp_th=exp_th,
151
- make_up=make_up,
152
- avg_coef=avg_coef,
153
- cmp_ratio=cmp_ratio,
154
- exp_ratio=exp_ratio,
155
- )
156
- # deprecated, please use lookahead instead
157
- self.delay = delay
158
- self.sr = sr
159
-
160
- self.params["at"] = nn.Parameter(ms2coef(torch.tensor(at_ms), sr))
161
- self.params["rt"] = nn.Parameter(ms2coef(torch.tensor(rt_ms), sr))
162
-
163
- if lookahead:
164
- self.params["lookahead"] = nn.Parameter(torch.ones(1) / sr * 1000)
165
- register_parametrization(
166
- self.params, "lookahead", WrappedPositive(max_lookahead)
167
- )
168
- sinc_length = int(sr * (max_lookahead + 1) * 0.001) + 1
169
- left_pad_size = int(sr * 0.001)
170
- self._pad_size = (left_pad_size, sinc_length - left_pad_size - 1)
171
- self.register_buffer(
172
- "_arange",
173
- torch.arange(sinc_length) - left_pad_size,
174
- persistent=False,
175
- )
176
- self.lookahead = lookahead
177
-
178
- register_parametrization(self.params, "at", SmoothingCoef())
179
- register_parametrization(self.params, "rt", SmoothingCoef())
180
- register_parametrization(self.params, "avg_coef", SmoothingCoef())
181
- register_parametrization(
182
- self.params, "cmp_ratio", MinMax(self.cmp_ratio_min, self.cmp_ratio_max)
183
- )
184
- register_parametrization(self.params, "exp_ratio", SmoothingCoef())
185
-
186
- def extra_repr(self) -> str:
187
- with torch.no_grad():
188
- s = (
189
- f"attack: {coef2ms(self.params.at, self.sr).item()} (ms)\n"
190
- f"release: {coef2ms(self.params.rt, self.sr).item()} (ms)\n"
191
- f"avg_coef: {self.params.avg_coef.item()}\n"
192
- f"compressor_ratio: {self.params.cmp_ratio.item()}\n"
193
- f"expander_ratio: {self.params.exp_ratio.item()}\n"
194
- f"compressor_threshold: {self.params.cmp_th.item()} (dB)\n"
195
- f"expander_threshold: {self.params.exp_th.item()} (dB)\n"
196
- f"make_up: {self.params.make_up.item()} (dB)"
197
- )
198
- if self.lookahead:
199
- s += f"\nlookahead: {self.params.lookahead.item()} (ms)"
200
- return s
201
-
202
- def toJSON(self) -> dict[str, Any]:
203
- return {
204
- "Attack (ms)": coef2ms(self.params.at, self.sr).item(),
205
- "Release (ms)": coef2ms(self.params.rt, self.sr).item(),
206
- "Average Coefficient": self.params.avg_coef.item(),
207
- "Compressor Ratio": self.params.cmp_ratio.item(),
208
- "Expander Ratio": self.params.exp_ratio.item(),
209
- "Compressor Threshold (dB)": self.params.cmp_th.item(),
210
- "Expander Threshold (dB)": self.params.exp_th.item(),
211
- "Make Up (dB)": self.params.make_up.item(),
212
- } | ({"Lookahead (ms)": self.params.lookahead.item()} if self.lookahead else {})
213
-
214
- def forward(self, x):
215
- if self.lookahead:
216
- lookahead_in_samples = self.params.lookahead * 0.001 * self.sr
217
- sinc_filter = torch.sinc(self._arange - lookahead_in_samples)
218
- lookahead_func = lambda gain: F.conv1d(
219
- F.pad(
220
- gain.view(-1, 1, gain.size(-1)), self._pad_size, mode="replicate"
221
- ),
222
- sinc_filter[None, None, :],
223
- ).view(*gain.shape)
224
- else:
225
- lookahead_func = lambda x: x
226
-
227
- return compressor_expander(
228
- x.reshape(-1, x.shape[-1]),
229
- lookahead_func=lookahead_func,
230
- **{k: v for k, v in self.params.items() if k != "lookahead"},
231
- ).view(*x.shape)
232
-
233
-
234
- class Panning(FX):
235
- def __init__(self, pan: float = 0.0):
236
- assert pan <= 100 and pan >= -100
237
- super().__init__(pan=(pan + 100) / 200)
238
-
239
- register_parametrization(self.params, "pan", SmoothingCoef())
240
-
241
- self.register_forward_pre_hook(broadcast2stereo)
242
-
243
- def extra_repr(self) -> str:
244
- with torch.no_grad():
245
- s = f"pan: {self.params.pan.item() * 200 - 100}"
246
- return s
247
-
248
- def toJSON(self) -> dict[str, Any]:
249
- return {
250
- "Pan": self.params.pan.item() * 200 - 100,
251
- }
252
-
253
- def forward(self, x: torch.Tensor):
254
- angle = self.params.pan.view(1) * torch.pi * 0.5
255
- amp = torch.concat([angle.cos(), angle.sin()]).view(2, 1) * STEREO_NORM
256
- return x * amp
257
-
258
-
259
- class StereoWidth(Panning):
260
- def forward(self, x: torch.Tensor):
261
- return chain_functions(hadamard, super().forward, hadamard)(x)
262
-
263
-
264
- class ImpulseResponse(nn.Module):
265
- def forward(self, h):
266
- return torch.cat([torch.ones_like(h[..., :1]), h], dim=-1)
267
-
268
-
269
- class FIR(FX):
270
- def __init__(
271
- self,
272
- length: int,
273
- channels: int = 2,
274
- conv_method: str = "direct",
275
- ):
276
- super().__init__(kernel=torch.zeros(channels, length - 1))
277
- self._padding = length - 1
278
- self.channels = channels
279
-
280
- match conv_method:
281
- case "direct":
282
- self.conv_func = F.conv1d
283
- case "fft":
284
- self.conv_func = fft_conv1d
285
- case _:
286
- raise ValueError(f"Unknown conv_method: {conv_method}")
287
-
288
- if channels == 2:
289
- self.register_forward_pre_hook(broadcast2stereo)
290
-
291
- def forward(self, x: torch.Tensor):
292
- zero_padded = F.pad(x[..., :-1], (self._padding, 0), "constant", 0)
293
- return x + self.conv_func(
294
- zero_padded, self.params.kernel.flip(1).unsqueeze(1), groups=self.channels
295
- )
296
-
297
-
298
- class QFactor(nn.Module):
299
- def forward(self, x):
300
- return x.exp()
301
-
302
- def right_inverse(self, y):
303
- return y.log()
304
-
305
-
306
- class LowPass(FX):
307
- def __init__(
308
- self,
309
- sr: int,
310
- freq: float = 17500.0,
311
- Q: float = 0.707,
312
- min_freq: float = 200.0,
313
- max_freq: float = 18000,
314
- min_Q: float = 0.5,
315
- max_Q: float = 10.0,
316
- ):
317
- super().__init__(freq=freq, Q=Q)
318
-
319
- self.sr = sr
320
- register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
321
- register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))
322
-
323
- def forward(self, x):
324
- return lowpass_biquad(
325
- x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
326
- )
327
-
328
- def extra_repr(self) -> str:
329
- with torch.no_grad():
330
- s = f"freq: {self.params.freq.item():.4f}, Q: {self.params.Q.item():.4f}"
331
- return s
332
-
333
- def toJSON(self) -> dict[str, Any]:
334
- return {
335
- "Frequency (Hz)": self.params.freq.item(),
336
- "Q": self.params.Q.item(),
337
- }
338
-
339
-
340
- class HighPass(LowPass):
341
- def __init__(
342
- self,
343
- *args,
344
- freq: float = 200.0,
345
- min_freq: float = 16.0,
346
- max_freq: float = 5300.0,
347
- **kwargs,
348
- ):
349
- super().__init__(
350
- *args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
351
- )
352
-
353
- def forward(self, x):
354
- return highpass_biquad(
355
- x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
356
- )
357
-
358
-
359
- class Peak(FX):
360
- def __init__(
361
- self,
362
- sr: int,
363
- gain: float = 0.0,
364
- freq: float = 2000.0,
365
- Q: float = 0.707,
366
- min_freq: float = 33.0,
367
- max_freq: float = 17500.0,
368
- min_Q: float = 0.2,
369
- max_Q: float = 20,
370
- ):
371
- super().__init__(freq=freq, Q=Q, gain=gain)
372
-
373
- self.sr = sr
374
-
375
- register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
376
- register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))
377
-
378
- def forward(self, x):
379
- return equalizer_biquad(
380
- x,
381
- sample_rate=self.sr,
382
- center_freq=self.params.freq,
383
- Q=self.params.Q,
384
- gain=self.params.gain,
385
- )
386
-
387
- def extra_repr(self) -> str:
388
- with torch.no_grad():
389
- s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}, Q: {self.params.Q.item():.4f}"
390
- return s
391
-
392
- def toJSON(self) -> dict[str, Any]:
393
- return {
394
- "Frequency (Hz)": self.params.freq.item(),
395
- "Gain (dB)": self.params.gain.item(),
396
- "Q": self.params.Q.item(),
397
- }
398
-
399
-
400
- class LowShelf(FX):
401
- def __init__(
402
- self,
403
- sr: int,
404
- gain: float = 0.0,
405
- freq: float = 115.0,
406
- min_freq: float = 30,
407
- max_freq: float = 200,
408
- ):
409
- super().__init__(freq=freq, gain=gain)
410
-
411
- self.sr = sr
412
- register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
413
-
414
- self.register_buffer("Q", torch.tensor(0.707), persistent=False)
415
-
416
- def forward(self, x):
417
- return lowshelf_biquad(
418
- x,
419
- sample_rate=self.sr,
420
- cutoff_freq=self.params.freq,
421
- gain=self.params.gain,
422
- Q=self.Q,
423
- )
424
-
425
- def extra_repr(self) -> str:
426
- with torch.no_grad():
427
- s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}"
428
- return s
429
-
430
- def toJSON(self) -> dict[str, Any]:
431
- return {
432
- "Frequency (Hz)": self.params.freq.item(),
433
- "Gain (dB)": self.params.gain.item(),
434
- }
435
-
436
-
437
- class HighShelf(LowShelf):
438
- def __init__(
439
- self,
440
- *args,
441
- freq: float = 4525,
442
- min_freq: float = 750,
443
- max_freq: float = 8300,
444
- **kwargs,
445
- ):
446
- super().__init__(
447
- *args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
448
- )
449
-
450
- def forward(self, x):
451
- return highshelf_biquad(
452
- x,
453
- sample_rate=self.sr,
454
- cutoff_freq=self.params.freq,
455
- gain=self.params.gain,
456
- Q=self.Q,
457
- )
458
-
459
-
460
- def module2coeffs(
461
- m: Union[LowPass, HighPass, Peak, LowShelf, HighShelf],
462
- ) -> Tuple[
463
- torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
464
- ]:
465
- match m:
466
- case LowPass():
467
- return lowpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
468
- case HighPass():
469
- return highpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
470
- case Peak():
471
- return equalizer_biquad_coef(m.sr, m.params.freq, m.params.Q, m.params.gain)
472
- case LowShelf():
473
- return lowshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
474
- case HighShelf():
475
- return highshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
476
- case _:
477
- raise ValueError(f"Unknown module: {m}")
478
-
479
-
480
- class AlwaysNegative(nn.Module):
481
- def forward(self, x):
482
- return -F.softplus(x)
483
-
484
- def right_inverse(self, y):
485
- return torch.log(y.neg().exp() - 1)
486
-
487
-
488
- class Reverb(FX):
489
- def __init__(self, ir_len=60000, n_fft=384, hop_length=192, downsample_factor=1):
490
- super().__init__(
491
- log_mag=torch.full((2, n_fft // downsample_factor // 2 + 1), -1.0),
492
- log_mag_delta=torch.full((2, n_fft // downsample_factor // 2 + 1), -5.0),
493
- )
494
-
495
- self.steps = (ir_len - n_fft + hop_length - 1) // hop_length
496
- self.n_fft = n_fft
497
- self.hop_length = hop_length
498
- self.downsample_factor = downsample_factor
499
-
500
- self._noise_angle = nn.Parameter(
501
- torch.rand(2, n_fft // 2 + 1, self.steps) * 2 * torch.pi
502
- )
503
-
504
- self.register_buffer(
505
- "_arange", torch.arange(self.steps, dtype=torch.float32), persistent=False
506
- )
507
- self.spec_forward = Spectrogram(n_fft, hop_length=hop_length, power=None)
508
- self.spec_inverse = InverseSpectrogram(
509
- n_fft,
510
- hop_length=hop_length,
511
- )
512
-
513
- register_parametrization(self.params, "log_mag", AlwaysNegative())
514
- register_parametrization(self.params, "log_mag_delta", AlwaysNegative())
515
-
516
- self.register_forward_pre_hook(broadcast2stereo)
517
-
518
- def forward(self, x):
519
- h = x
520
- H = self.spec_forward(h)
521
-
522
- log_mag = self.params.log_mag
523
- log_mag_delta = self.params.log_mag_delta
524
-
525
- if self.downsample_factor > 1:
526
- log_mag = F.interpolate(
527
- log_mag.unsqueeze(0),
528
- size=self._noise_angle.size(1),
529
- align_corners=True,
530
- mode="linear",
531
- ).squeeze(0)
532
- log_mag_delta = F.interpolate(
533
- log_mag_delta.unsqueeze(0),
534
- size=self._noise_angle.size(1),
535
- align_corners=True,
536
- mode="linear",
537
- ).squeeze(0)
538
-
539
- ir_2d = torch.exp(
540
- log_mag.unsqueeze(-1)
541
- + log_mag_delta.unsqueeze(-1) * self._arange
542
- + self._noise_angle * 1j
543
- )
544
-
545
- padded_H = F.pad(H.flatten(1, 2), (ir_2d.shape[-1] - 1, 0))
546
-
547
- H = F.conv1d(
548
- padded_H,
549
- hadamard(ir_2d.unsqueeze(0)).flatten(1, 2).flip(-1).transpose(0, 1),
550
- groups=H.shape[2] * 2,
551
- ).view(*H.shape)
552
-
553
- h = self.spec_inverse(H)
554
- return h
555
-
556
-
557
- class Delay(FX):
558
- min_delay: float = 100
559
- max_delay: float = 1000
560
-
561
- def __init__(
562
- self,
563
- sr: int,
564
- delay=200.0,
565
- feedback=0.1,
566
- gain=0.1,
567
- ir_duration: float = 2,
568
- eq: Optional[nn.Module] = None,
569
- recursive_eq=False,
570
- ):
571
- super().__init__(
572
- delay=delay,
573
- feedback=feedback,
574
- gain=gain,
575
- )
576
- self.sr = sr
577
- self.ir_length = int(sr * max(ir_duration, self.max_delay * 0.002))
578
-
579
- register_parametrization(
580
- self.params, "delay", MinMax(self.min_delay, self.max_delay)
581
- )
582
- register_parametrization(self.params, "feedback", SmoothingCoef())
583
- register_parametrization(self.params, "gain", SmoothingCoef())
584
-
585
- self.eq = eq
586
- self.recursive_eq = recursive_eq
587
-
588
- self.register_buffer(
589
- "_arange", torch.arange(self.ir_length, dtype=torch.float32)
590
- )
591
-
592
- self.odd_pan = Panning(0)
593
- self.even_pan = Panning(0)
594
-
595
- def forward(self, x):
596
- assert x.size(1) == 1, x.size()
597
- delay_in_samples = self.sr * self.params.delay * 0.001
598
- num_delays = self.ir_length // int(delay_in_samples.item() + 1)
599
- series = torch.arange(1, num_delays + 1, device=x.device)
600
- decays = self.params.feedback ** (series - 1)
601
-
602
- if self.recursive_eq and self.eq is not None:
603
- sinc_index = self._arange - delay_in_samples
604
- single_sinc_filter = torch.sinc(sinc_index)
605
- eq_sinc_filter = self.eq(single_sinc_filter)
606
- H = torch.fft.rfft(eq_sinc_filter)
607
- H_powered = torch.polar(
608
- H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
609
- )
610
- sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
611
- else:
612
- delays_in_samples = delay_in_samples * series
613
- sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
614
- sinc_filters = torch.sinc(sinc_indexes)
615
-
616
- decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)
617
- return self._filter(x, decayed_sinc_filters)
618
-
619
- def _filter(self, x: torch.Tensor, decayed_sinc_filters: torch.Tensor):
620
- odd_delay_filters = torch.sum(decayed_sinc_filters[::2], 0)
621
- even_delay_filters = torch.sum(decayed_sinc_filters[1::2], 0)
622
- stacked_filters = torch.stack([odd_delay_filters, even_delay_filters])
623
-
624
- if self.eq is not None and not self.recursive_eq:
625
- stacked_filters = self.eq(stacked_filters)
626
-
627
- gained_odd_even_filters = stacked_filters * self.params.gain
628
- padded_x = F.pad(x, (gained_odd_even_filters.size(-1) - 1, 0))
629
- conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
630
- return sum(
631
- [
632
- panner(s)
633
- for panner, s in zip(
634
- [self.odd_pan, self.even_pan],
635
- # fft_conv1d(
636
- conv1d(
637
- padded_x,
638
- gained_odd_even_filters.flip(-1).unsqueeze(1),
639
- ).chunk(2, 1),
640
- )
641
- ]
642
- )
643
-
644
- def extra_repr(self) -> str:
645
- with torch.no_grad():
646
- s = (
647
- f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
648
- f"feedback: {self.params.feedback.item()}\n"
649
- f"gain: {self.params.gain.item()}"
650
- )
651
- return s
652
-
653
- def toJSON(self) -> dict[str, Any]:
654
- return {
655
- "Delay (ms)": self.params.delay.item(),
656
- "Feedback (dB)": self.params.feedback.log10().mul(20).item(),
657
- "Gain (dB)": self.params.gain.log10().mul(20).item(),
658
- "Odd delays": self.odd_pan.toJSON(),
659
- "Even delays": self.even_pan.toJSON(),
660
- }
661
-
662
-
663
- class SurrogateDelay(Delay):
664
- def __init__(self, *args, dropout=0.5, straight_through=False, **kwargs):
665
- super().__init__(*args, **kwargs)
666
-
667
- self.dropout = dropout
668
- self.straight_through = straight_through
669
- self.log_damp = nn.Parameter(torch.ones(1) * -0.01)
670
- register_parametrization(self, "log_damp", AlwaysNegative())
671
-
672
- def forward(self, x):
673
- assert x.size(1) == 1, x.size()
674
- if not self.training:
675
- return super().forward(x)
676
-
677
- log_damp = self.log_damp
678
- delay_in_samples = self.sr * self.params.delay * 0.001
679
- num_delays = self.ir_length // int(delay_in_samples.item() + 1)
680
- series = torch.arange(1, num_delays + 1, device=x.device)
681
- decays = self.params.feedback ** (series - 1)
682
-
683
- if self.recursive_eq and self.eq is not None:
684
- exp_factor = self._arange[: self.ir_length // 2 + 1]
685
- damped_exp = torch.exp(
686
- log_damp * exp_factor
687
- - 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factor
688
- )
689
- sinc_filter = torch.fft.irfft(damped_exp, n=self.ir_length)
690
- if self.straight_through:
691
- sinc_index = self._arange - delay_in_samples
692
- hard_sinc_filter = torch.sinc(sinc_index)
693
- sinc_filter = sinc_filter + (hard_sinc_filter - sinc_filter).detach()
694
-
695
- eq_sinc_filter = self.eq(sinc_filter)
696
- H = torch.fft.rfft(eq_sinc_filter)
697
-
698
- # use polar form to avoid NaN
699
- H_powered = torch.polar(
700
- H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
701
- )
702
- sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
703
- else:
704
- exp_factors = series.unsqueeze(-1) * self._arange[: self.ir_length // 2 + 1]
705
- damped_exps = torch.exp(
706
- log_damp * exp_factors
707
- - 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factors
708
- )
709
- sinc_filters = torch.fft.irfft(damped_exps, n=self.ir_length)
710
- if self.straight_through:
711
- delays_in_samples = delay_in_samples * series
712
- sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
713
- hard_sinc_filters = torch.sinc(sinc_indexes)
714
- sinc_filters = (
715
- sinc_filters + (hard_sinc_filters - sinc_filters).detach()
716
- )
717
-
718
- decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)
719
-
720
- dropout_mask = torch.rand(x.size(0), device=x.device) < self.dropout
721
- if not torch.any(dropout_mask):
722
- return self._filter(x, decayed_sinc_filters)
723
- elif torch.all(dropout_mask):
724
- return super().forward(x)
725
-
726
- out = torch.zeros((x.size(0), 2, x.size(2)), device=x.device)
727
- out[~dropout_mask] = self._filter(x[~dropout_mask], decayed_sinc_filters)
728
- out[dropout_mask] = super().forward(x[dropout_mask])
729
- return out
730
-
731
- def extra_repr(self) -> str:
732
- with torch.no_grad():
733
- return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"
734
-
735
-
736
- class FSDelay(FX):
737
- def __init__(
738
- self,
739
- sr: int,
740
- delay=200.0,
741
- feedback=0.1,
742
- gain=0.1,
743
- ir_duration: float = 6,
744
- eq: Optional[LowPass] = None,
745
- recursive_eq=False,
746
- ):
747
- super().__init__(
748
- delay=delay,
749
- feedback=feedback,
750
- gain=gain,
751
- )
752
- self.sr = sr
753
- self.ir_length = int(sr * max(ir_duration, Delay.max_delay * 0.002))
754
-
755
- register_parametrization(
756
- self.params, "delay", MinMax(Delay.min_delay, Delay.max_delay)
757
- )
758
- register_parametrization(self.params, "gain", SmoothingCoef())
759
-
760
- T_60 = ir_duration * 0.75
761
- max_delay_in_samples = sr * Delay.max_delay * 0.001
762
- maximum_decay = db2amp(torch.tensor(-60 / sr / T_60 * max_delay_in_samples))
763
- register_parametrization(self.params, "feedback", MinMax(0, maximum_decay))
764
-
765
- self.eq = eq
766
- self.recursive_eq = recursive_eq
767
-
768
- self.odd_pan = Panning(0)
769
- self.even_pan = Panning(0)
770
-
771
- self.register_buffer(
772
- "_arange", torch.arange(self.ir_length, dtype=torch.float32)
773
- )
774
-
775
- def _get_h(self):
776
- freqs = self._arange[: self.ir_length // 2 + 1] / self.ir_length * 2 * torch.pi
777
- delay_in_samples = self.sr * self.params.delay * 0.001
778
-
779
- # construct it like a fdn
780
- Dinv = torch.exp(1j * freqs * delay_in_samples)
781
- Dinv2 = torch.exp(2j * freqs * delay_in_samples)
782
- if self.recursive_eq and self.eq is not None:
783
- b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
784
- z_inv = torch.exp(-1j * freqs)
785
- z_inv2 = torch.exp(-2j * freqs)
786
- eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
787
- damp = eq_H * self.params.feedback
788
- det = Dinv2 - damp * damp
789
- else:
790
- damp = torch.full_like(Dinv, self.params.feedback) + 0j
791
- det = Dinv2 - self.params.feedback.square()
792
- inv_Dinv_m_A = torch.stack([Dinv, damp], 0) / det
793
- h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length) * self.params.gain
794
-
795
- if self.eq is not None and not self.recursive_eq:
796
- h = self.eq(h)
797
- return h
798
-
799
- def forward(self, x):
800
- assert x.size(1) == 1, x.size()
801
- h = self._get_h()
802
-
803
- padded_x = F.pad(x, (h.size(-1) - 1, 0))
804
- conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
805
- return sum(
806
- [
807
- panner(s)
808
- for panner, s in zip(
809
- [self.odd_pan, self.even_pan],
810
- conv1d(
811
- padded_x,
812
- h.flip(-1).unsqueeze(1),
813
- ).chunk(2, 1),
814
- )
815
- ]
816
- )
817
-
818
- def extra_repr(self) -> str:
819
- with torch.no_grad():
820
- s = (
821
- f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
822
- f"feedback: {self.params.feedback.item()}\n"
823
- f"gain: {self.params.gain.item()}"
824
- )
825
- return s
826
-
827
-
828
- class FSSurrogateDelay(FSDelay):
829
- def __init__(self, *args, straight_through=False, **kwargs):
830
- super().__init__(*args, **kwargs)
831
-
832
- self.straight_through = straight_through
833
- self.log_damp = nn.Parameter(torch.ones(1) * -0.0001)
834
- register_parametrization(self, "log_damp", AlwaysNegative())
835
-
836
- def _get_h(self):
837
- if not self.training:
838
- return super()._get_h()
839
-
840
- log_damp = self.log_damp
841
- delay_in_samples = self.sr * self.params.delay * 0.001
842
-
843
- exp_factor = self._arange[: self.ir_length // 2 + 1]
844
- freqs = exp_factor / self.ir_length * 2 * torch.pi
845
- D = torch.exp(log_damp * exp_factor - 1j * delay_in_samples * freqs)
846
- D2 = torch.exp(log_damp * exp_factor * 2 - 2j * delay_in_samples * freqs)
847
-
848
- if self.straight_through:
849
- D_orig = torch.exp(-1j * delay_in_samples * freqs)
850
- D2_orig = torch.exp(-2j * delay_in_samples * freqs)
851
- D = torch.stack([D, D_orig], 0)
852
- D2 = torch.stack([D2, D2_orig], 0)
853
-
854
- if self.recursive_eq and self.eq is not None:
855
- b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
856
- z_inv = torch.exp(-1j * freqs)
857
- z_inv2 = torch.exp(-2j * freqs)
858
- eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
859
- damp = eq_H * self.params.feedback
860
- odd_H = D / (1 - damp * damp * D2)
861
- even_H = odd_H * D * damp
862
- else:
863
- damp = torch.full_like(D, self.params.feedback) + 0j
864
- odd_H = D / (1 - self.params.feedback.square() * D2)
865
- even_H = odd_H * D * self.params.feedback
866
-
867
- inv_Dinv_m_A = torch.stack([odd_H, even_H], 0)
868
- h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length)
869
-
870
- if self.straight_through:
871
- damped_h, orig_h = h.unbind(1)
872
- h = damped_h + (orig_h - damped_h).detach()
873
-
874
- if self.eq is not None and not self.recursive_eq:
875
- h = self.eq(h)
876
- return h * self.params.gain
877
-
878
- def extra_repr(self) -> str:
879
- with torch.no_grad():
880
- return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"
881
-
882
-
883
- class SendFXsAndSum(FX):
884
- def __init__(self, *args, cross_send=True, pan_direct=False):
885
- super().__init__(
886
- **(
887
- {
888
- f"sends_{i}": torch.full([len(args) - i - 1], 0.01)
889
- for i in range(len(args) - 1)
890
- }
891
- if cross_send
892
- else {}
893
- )
894
- )
895
- self.effects = nn.ModuleList(args)
896
- if pan_direct:
897
- self.pan = Panning()
898
-
899
- if cross_send:
900
- for i in range(len(args) - 1):
901
- register_parametrization(self.params, f"sends_{i}", SmoothingCoef())
902
-
903
- def forward(self, x):
904
- if hasattr(self, "pan"):
905
- di = self.pan(x)
906
- else:
907
- di = x
908
-
909
- if len(self.params) == 0:
910
- return di, reduce(
911
- lambda x, y: x[..., : y.shape[-1]] + y[..., : x.shape[-1]],
912
- map(lambda f: f(x), self.effects),
913
- )
914
-
915
- def f(states, ps):
916
- x, cum_sends = states
917
- m, send_gains = ps
918
- h = m(cum_sends[0])
919
- return (
920
- x[..., : h.shape[-1]] + h[..., : x.shape[-1]],
921
- (
922
- None
923
- if cum_sends.size(0) == 1
924
- else cum_sends[1:, ..., : h.shape[-1]]
925
- + send_gains[:, None, None, None] * h[..., : cum_sends.shape[-1]]
926
- ),
927
- )
928
-
929
- return (
930
- di,
931
- reduce(
932
- f,
933
- zip(
934
- self.effects,
935
- [self.params[f"sends_{i}"] for i in range(len(self.effects) - 1)]
936
- + [None],
937
- ),
938
- (
939
- torch.zeros_like(x),
940
- x.unsqueeze(0).expand(len(self.effects), -1, -1, -1),
941
- ),
942
- )[0],
943
- )
944
-
945
-
946
- class UniLossLess(nn.Module):
947
- def forward(self, x):
948
- tri = x.triu(1)
949
- return torch.linalg.matrix_exp(tri - tri.T)
950
-
951
-
952
- class FDN(FX):
953
- max_delay = 100
954
-
955
- def __init__(
956
- self,
957
- sr: int,
958
- ir_duration: float = 1.0,
959
- delays=(997, 1153, 1327, 1559, 1801, 2099),
960
- trainable_delay=False,
961
- num_decay_freq=1,
962
- delay_independent_decay=False,
963
- eq: Optional[nn.Module] = None,
964
- ):
965
- # beta = torch.distributions.Beta(1.1, 6)
966
- num_delays = len(delays)
967
- super().__init__(
968
- b=torch.ones(num_delays, 2) / num_delays,
969
- c=torch.zeros(2, num_delays),
970
- U=torch.randn(num_delays, num_delays) / num_delays**0.5,
971
- gamma=torch.rand(
972
- num_decay_freq, num_delays if not delay_independent_decay else 1
973
- )
974
- * 0.2
975
- + 0.4,
976
- # delays=beta.sample((num_delays,)) * 64,
977
- )
978
-
979
- self.sr = sr
980
- self.ir_length = int(sr * ir_duration)
981
-
982
- # ir_duration = T_60
983
- T_60 = ir_duration * 0.75
984
- delays = torch.tensor(delays)
985
- if delay_independent_decay:
986
- gamma_max = db2amp(-60 / sr / T_60 * delays.min())
987
- else:
988
- gamma_max = db2amp(-60 / sr / T_60 * delays)
989
-
990
- register_parametrization(self.params, "gamma", MinMax(0, gamma_max))
991
- register_parametrization(self.params, "U", UniLossLess())
992
-
993
- if not trainable_delay:
994
- self.register_buffer(
995
- "delays",
996
- delays,
997
- )
998
- else:
999
- self.params["delays"] = nn.Parameter(delays / sr * 1000)
1000
- register_parametrization(self.params, "delays", MinMax(0, self.max_delay))
1001
-
1002
- self.register_forward_pre_hook(broadcast2stereo)
1003
-
1004
- self.eq = eq
1005
-
1006
- def forward(self, x):
1007
- conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
1008
-
1009
- c = self.params.c + 0j
1010
- b = self.params.b + 0j
1011
-
1012
- gamma = self.params.gamma
1013
- delays = self.delays if hasattr(self, "delays") else self.params.delays
1014
-
1015
- if gamma.size(0) > 1:
1016
- gamma = F.interpolate(
1017
- gamma.T.unsqueeze(1),
1018
- size=self.ir_length // 2 + 1,
1019
- align_corners=True,
1020
- mode="linear",
1021
- ).transpose(0, 2)
1022
-
1023
- if gamma.size(2) == 1:
1024
- gamma = gamma ** (delays / delays.min())
1025
-
1026
- A = self.params.U * gamma
1027
-
1028
- freqs = (
1029
- torch.arange(self.ir_length // 2 + 1, device=x.device)
1030
- / self.ir_length
1031
- * 2
1032
- * torch.pi
1033
- )
1034
- invD = torch.exp(1j * freqs[:, None] * delays)
1035
- # H = c @ torch.linalg.inv(torch.diag_embed(invD) - A) @ b
1036
- H = c @ torch.linalg.solve(torch.diag_embed(invD) - A, b)
1037
-
1038
- h = torch.fft.irfft(H.permute(1, 2, 0), n=self.ir_length)
1039
-
1040
- if self.eq is not None:
1041
- h = self.eq(h)
1042
-
1043
- # return fft_conv1d(
1044
- return conv1d(
1045
- F.pad(x, (self.ir_length - 1, 0)),
1046
- h.flip(-1),
1047
- )
1048
-
1049
- def toJSON(self) -> dict[str, Any]:
1050
- return {
1051
- "T60 (s)": {
1052
- f"{f:.2f} Hz": g.item()
1053
- for f, g in zip(
1054
- torch.linspace(0, 22050, self.params.gamma.numel()),
1055
- -60 * self.delays.min() / amp2db(self.params.gamma) / 44100,
1056
- )
1057
- },
1058
- "Gain (dB, approx)": amp2db(
1059
- torch.linalg.norm(self.params.b) * torch.linalg.norm(self.params.c)
1060
- ).item(),
1061
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modules/rt.py DELETED
@@ -1,150 +0,0 @@
1
- import numpy as np
2
- from numba import njit, prange
3
- from scipy.signal import firwin2
4
- import torch
5
-
6
- from .fx import Delay, FDN, module2coeffs
7
-
8
-
9
- @njit
10
- def rt_fdn(
11
- x: np.ndarray,
12
- delay_steps: np.ndarray,
13
- firs: np.ndarray,
14
- U: np.ndarray,
15
- ):
16
- _, T = x.shape
17
- M = delay_steps.shape[0]
18
- order = firs.shape[1]
19
- y = np.zeros_like(x)
20
- buf_size = delay_steps.max() + order
21
- delay_buf = np.zeros((M, buf_size), dtype=x.dtype)
22
- read_pointer = 0
23
-
24
- for t in range(T):
25
- # out = delay_buf[(range(M), read_pointers)]
26
- # for i in prange(M):
27
- # out[i] = delay_buf[i, read_pointers[i]]
28
- out = delay_buf[:, read_pointer]
29
- y[:, t] = out
30
-
31
- s = out * firs[:, 0]
32
- # indexes = (read_pointers[:, None] - np.arange(1, order)) % buf_sizes[:, None]
33
- # reg = np.take_along_axis(delay_buf, indexes, axis=1)
34
- # s += firs[:, 1:] @ reg.T
35
- # for j in prange(M):
36
- # s[j] += firs[j, 1:] @ delay_buf[j, indexes[j]]
37
- for i in prange(M):
38
- for j in prange(1, order):
39
- s[i] += firs[i, j] * delay_buf[i, (read_pointer - j) % buf_size]
40
- # for i in prange(1, order):
41
- # s += firs[:, i] * delay_buf[:, (read_pointer - i) % buf_size]
42
-
43
- feedback = U @ s + x[:, t]
44
- w_pointers = (read_pointer + delay_steps) % buf_size
45
- # delay_buf[(range(M), w_pointers)] = s + B @ x[:, t]
46
- for i in prange(M):
47
- delay_buf[i, w_pointers[i]] = feedback[i]
48
- read_pointer = (read_pointer + 1) % buf_size
49
-
50
- return y
51
-
52
-
53
- @njit
54
- def rt_delay(
55
- x: np.ndarray,
56
- delay_step: int,
57
- b0: float,
58
- b1: float,
59
- b2: float,
60
- a1: float,
61
- a2: float,
62
- ):
63
- T = x.shape[0]
64
- y = np.zeros((2, T), dtype=x.dtype)
65
- buf_size = delay_step + 1
66
- read_pointer = 0
67
- delay_buf = np.zeros((2, buf_size), dtype=x.dtype)
68
- bq_buf = np.zeros((2, 2), dtype=x.dtype)
69
-
70
- for t in range(T):
71
- out = delay_buf[:, read_pointer]
72
- y[:, t] = out
73
-
74
- s = bq_buf[:, 0] + b0 * out
75
- bq_buf[:, 0] = bq_buf[:, 1] + b1 * out - a1 * s
76
- bq_buf[:, 1] = b2 * out - a2 * s
77
-
78
- w_pointer = (read_pointer + delay_step) % buf_size
79
- # cross feeding because of ping-pong delay
80
- delay_buf[0, w_pointer] = s[1] + x[t]
81
- delay_buf[1, w_pointer] = s[0]
82
-
83
- read_pointer = (read_pointer + 1) % buf_size
84
-
85
- return y
86
-
87
-
88
- class RealTimeDelay(Delay):
89
- def forward(self, x):
90
- assert x.size(1) == 1, x.size()
91
- assert x.size(0) == 1, x.size()
92
- with torch.no_grad():
93
- delay_in_samples = round(self.sr * self.params.delay.item() * 0.001)
94
- feedback = self.params.feedback.item()
95
-
96
- if self.recursive_eq and self.eq is not None:
97
- b0, b1, b2, a0, a1, a2 = [p.item() for p in module2coeffs(self.eq)]
98
- b0, b1, b2, a1, a2 = b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0
99
- else:
100
- b0, b1, b2, a1, a2 = 1.0, 0.0, 0.0, 0.0, 0.0
101
-
102
- b0 = b0 * feedback
103
- b1 = b1 * feedback
104
- b2 = b2 * feedback
105
- x_numpy = x.squeeze().cpu().numpy()
106
- y_numpy = rt_delay(x_numpy, delay_in_samples, b0, b1, b2, a1, a2)
107
- y = torch.from_numpy(y_numpy).unsqueeze(0).to(x.device) * self.params.gain
108
- return self.odd_pan(y[:, :1]) + self.even_pan(y[:, 1:])
109
-
110
-
111
- class RealTimeFDN(FDN):
112
- def forward(self, x):
113
- assert x.size(1) == 2, x.size()
114
- assert x.size(0) == 1, x.size()
115
- with torch.no_grad():
116
- delays = self.delays if hasattr(self, "delays") else self.params.delays
117
-
118
- c = self.params.c
119
- b = self.params.b
120
- gamma = self.params.gamma.clone()
121
-
122
- if gamma.size(1) == 1:
123
- gamma = gamma ** (delays / delays.min())
124
-
125
- freqs = np.linspace(0, 1, gamma.size(0))
126
- firs = np.apply_along_axis(
127
- lambda x: firwin2(gamma.size(0) * 2 - 1, freqs, x, fs=2),
128
- 1,
129
- gamma.cpu().numpy().T,
130
- ).astype(np.float32)
131
- shifted_delays = delays - firs.shape[1] // 2
132
-
133
- U = self.params.U
134
-
135
- x = b @ x.squeeze()
136
-
137
- y_numpy = rt_fdn(
138
- x.cpu().numpy(),
139
- # delays.cpu().numpy(),
140
- shifted_delays.cpu().numpy(),
141
- # firs.cpu().numpy(),
142
- firs,
143
- U.cpu().numpy(),
144
- )
145
- y = c @ torch.from_numpy(y_numpy).to(x.device)
146
- y = y.unsqueeze(0)
147
-
148
- if self.eq is not None:
149
- y = self.eq(y)
150
- return y
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modules/utils.py DELETED
@@ -1,64 +0,0 @@
1
- import torch
2
- import numpy as np
3
- from functools import reduce, partial
4
- from operator import mul
5
- from torch.nn.utils.parametrize import is_parametrized, remove_parametrizations
6
-
7
-
8
- def chain_functions(*functions):
9
- return lambda initial: reduce(lambda x, f: f(x), functions, initial)
10
-
11
-
12
- def remove_fx_parametrisation(fx):
13
- def remover(m):
14
- if not is_parametrized(m):
15
- return
16
- for k in list(m.parametrizations.keys()):
17
- remove_parametrizations(m, k)
18
-
19
- fx.apply(remover)
20
- return fx
21
-
22
-
23
- def get_chunks(keys, original_shapes):
24
- (position, _), *_ = filter(lambda i_k: "U.original" in i_k[1], enumerate(keys))
25
- original_chunks = list(map(partial(reduce, mul), original_shapes))
26
- U_matrix_shape = original_shapes[position]
27
-
28
- dimensions_not_need = np.ravel_multi_index(
29
- np.tril_indices(**dict(zip(("n", "m"), U_matrix_shape))), U_matrix_shape
30
- ) + sum(original_chunks[:position])
31
-
32
- selected_chunks = (
33
- original_chunks[:position]
34
- + [original_chunks[position] - dimensions_not_need.size]
35
- + original_chunks[position + 1 :]
36
- )
37
- return selected_chunks, position, U_matrix_shape, dimensions_not_need
38
-
39
-
40
- def vec2statedict(
41
- x: torch.Tensor,
42
- keys,
43
- original_shapes,
44
- selected_chunks,
45
- position,
46
- U_matrix_shape,
47
- ):
48
- chunks = list(torch.split(x, selected_chunks))
49
- U = x.new_zeros(reduce(mul, U_matrix_shape))
50
- U[
51
- np.ravel_multi_index(
52
- np.triu_indices(n=U_matrix_shape[0], k=1, m=U_matrix_shape[1]),
53
- U_matrix_shape,
54
- )
55
- ] = chunks[position]
56
- chunks[position] = U
57
-
58
- state_dict = dict(
59
- zip(
60
- keys,
61
- map(lambda x, shape: x.reshape(*shape), chunks, original_shapes),
62
- )
63
- )
64
- return state_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
presets/fx_config.yaml DELETED
@@ -1,188 +0,0 @@
1
- epochs: 2000
2
- data_dir: null
3
- log_dir: null
4
- lufs: -18
5
- sr: 44100
6
- chunk_duration: 12
7
- chunk_overlap: 5
8
- device: cuda
9
- batch_size: 35
10
- dataset: medley_vocal
11
- regularise_delay: true
12
- model:
13
- _target_: torch.nn.Sequential
14
- _args_:
15
- - _target_: modules.fx.Peak
16
- sr: 44100
17
- freq: 800
18
- min_freq: 33
19
- max_freq: 5400
20
- - _target_: modules.fx.Peak
21
- sr: 44100
22
- freq: 4000
23
- min_freq: 200
24
- max_freq: 17500
25
- - _target_: modules.fx.LowShelf
26
- sr: 44100
27
- freq: 115
28
- min_freq: 30
29
- max_freq: 200
30
- - _target_: modules.fx.HighShelf
31
- sr: 44100
32
- freq: 6000
33
- min_freq: 750
34
- max_freq: 8300
35
- - _target_: modules.fx.LowPass
36
- sr: 44100
37
- freq: 17500
38
- min_freq: 200
39
- max_freq: 18000
40
- - _target_: modules.fx.HighPass
41
- sr: 44100
42
- freq: 200
43
- min_freq: 16
44
- max_freq: 5300
45
- - _target_: modules.fx.CompressorExpander
46
- sr: 44100
47
- cmp_ratio: 2.0
48
- exp_ratio: 0.5
49
- at_ms: 50.0
50
- rt_ms: 50.0
51
- avg_coef: 0.3
52
- cmp_th: -18.0
53
- exp_th: -48.0
54
- make_up: 0.0
55
- lookahead: true
56
- max_lookahead: 15
57
- - _target_: modules.fx.SendFXsAndSum
58
- _args_:
59
- - _target_: modules.fx.SurrogateDelay
60
- sr: 44100
61
- delay: 400
62
- dropout: 0
63
- straight_through: true
64
- recursive_eq: true
65
- ir_duration: 4
66
- eq:
67
- _target_: modules.fx.LowPass
68
- sr: 44100
69
- freq: 8000
70
- min_freq: 200
71
- max_freq: 16000
72
- min_Q: 0.5
73
- max_Q: 2
74
- - _target_: modules.fx.FDN
75
- sr: 44100
76
- delays:
77
- - 997
78
- - 1153
79
- - 1327
80
- - 1559
81
- - 1801
82
- - 2099
83
- num_decay_freq: 49
84
- delay_independent_decay: true
85
- ir_duration: 12
86
- eq:
87
- _target_: torch.nn.Sequential
88
- _args_:
89
- - _target_: modules.fx.Peak
90
- sr: 44100
91
- freq: 800
92
- min_freq: 200
93
- max_freq: 2500
94
- min_Q: 0.1
95
- max_Q: 3
96
- - _target_: modules.fx.Peak
97
- sr: 44100
98
- freq: 4000
99
- min_freq: 600
100
- max_freq: 7000
101
- min_Q: 0.1
102
- max_Q: 3
103
- - _target_: modules.fx.LowShelf
104
- sr: 44100
105
- freq: 115
106
- min_freq: 30
107
- max_freq: 450
108
- - _target_: modules.fx.HighShelf
109
- sr: 44100
110
- freq: 8000
111
- min_freq: 1500
112
- max_freq: 16000
113
- cross_send: true
114
- pan_direct: true
115
- optimiser:
116
- _target_: torch.optim.Adam
117
- lr: 0.01
118
- mss:
119
- fft_sizes:
120
- - 128
121
- - 512
122
- - 2048
123
- hop_sizes:
124
- - 32
125
- - 128
126
- - 512
127
- mldr:
128
- s_taus:
129
- - 50
130
- - 100
131
- l_taus:
132
- - 1000
133
- - 2000
134
- loss_fn:
135
- _target_: loss.SumLosses
136
- weights:
137
- - 1.0
138
- - 0.5
139
- - 0.5
140
- - 0.25
141
- loss_fns:
142
- - _target_: auraloss.freq.MultiResolutionSTFTLoss
143
- fft_sizes:
144
- - 128
145
- - 512
146
- - 2048
147
- hop_sizes:
148
- - 32
149
- - 128
150
- - 512
151
- win_lengths:
152
- - 128
153
- - 512
154
- - 2048
155
- sample_rate: 44100
156
- perceptual_weighting: true
157
- - _target_: auraloss.freq.SumAndDifferenceSTFTLoss
158
- fft_sizes:
159
- - 128
160
- - 512
161
- - 2048
162
- hop_sizes:
163
- - 32
164
- - 128
165
- - 512
166
- win_lengths:
167
- - 128
168
- - 512
169
- - 2048
170
- sample_rate: 44100
171
- perceptual_weighting: true
172
- - _target_: loss.ldr.MLDRLoss
173
- sr: 44100
174
- s_taus:
175
- - 50
176
- - 100
177
- l_taus:
178
- - 1000
179
- - 2000
180
- - _target_: loss.ldr.MLDRLoss
181
- sr: 44100
182
- mid_side: true
183
- s_taus:
184
- - 50
185
- - 100
186
- l_taus:
187
- - 1000
188
- - 2000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
presets/internal/feature_mask.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:47a6ca4536dd9215ec45cc9d3aecc575e2b75d6a8375082b42d8b1a1ec055820
3
- size 279
 
 
 
 
presets/internal/gaussian.npz DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c01b52c46bb4ae3202814b813ed1bfe4c82f6b36d646fe08bc13371e1119db75
3
- size 68620
 
 
 
 
presets/internal/info.json DELETED
@@ -1,1695 +0,0 @@
1
- {
2
- "runs": [
3
- "~/processed/anon_tokyo/run_1",
4
- "~/processed/anon_tokyo/run_1",
5
- "~/processed/anon_tokyo/run_1",
6
- "~/processed/anon_tokyo/run_1",
7
- "~/processed/anon_tokyo/run_1",
8
- "~/processed/anon_tokyo/run_1",
9
- "~/processed/anon_tokyo/run_1",
10
- "~/processed/anon_tokyo/run_1",
11
- "~/processed/anon_tokyo/run_1",
12
- "~/processed/anon_tokyo/run_1",
13
- "~/processed/anon_tokyo/run_1",
14
- "~/processed/anon_tokyo/run_1",
15
- "~/processed/anon_tokyo/run_1",
16
- "~/processed/anon_tokyo/run_1",
17
- "~/processed/anon_tokyo/run_1",
18
- "~/processed/anon_tokyo/run_1",
19
- "~/processed/anon_tokyo/run_1",
20
- "~/processed/anon_tokyo/run_1",
21
- "~/processed/anon_tokyo/run_1",
22
- "~/processed/anon_tokyo/run_1",
23
- "~/processed/anon_tokyo/run_1",
24
- "~/processed/anon_tokyo/run_1",
25
- "~/processed/anon_tokyo/run_1",
26
- "~/processed/anon_tokyo/run_1",
27
- "~/processed/anon_tokyo/run_1",
28
- "~/processed/anon_tokyo/run_1",
29
- "~/processed/anon_tokyo/run_1",
30
- "~/processed/anon_tokyo/run_1",
31
- "~/processed/anon_tokyo/run_1",
32
- "~/processed/anon_tokyo/run_1",
33
- "~/processed/anon_tokyo/run_1",
34
- "~/processed/anon_tokyo/run_1",
35
- "~/processed/anon_tokyo/run_1",
36
- "~/processed/anon_tokyo/run_1",
37
- "~/processed/anon_tokyo/run_1",
38
- "~/processed/anon_tokyo/run_1",
39
- "~/processed/anon_tokyo/run_1",
40
- "~/processed/anon_tokyo/run_1",
41
- "~/processed/anon_tokyo/run_1",
42
- "~/processed/anon_tokyo/run_1",
43
- "~/processed/anon_tokyo/run_1",
44
- "~/processed/anon_tokyo/run_1",
45
- "~/processed/anon_tokyo/run_1",
46
- "~/processed/anon_tokyo/run_1",
47
- "~/processed/anon_tokyo/run_1",
48
- "~/processed/anon_tokyo/run_1",
49
- "~/processed/anon_tokyo/run_1",
50
- "~/processed/anon_tokyo/run_1",
51
- "~/processed/anon_tokyo/run_1",
52
- "~/processed/anon_tokyo/run_1",
53
- "~/processed/anon_tokyo/run_1",
54
- "~/processed/anon_tokyo/run_1",
55
- "~/processed/anon_tokyo/run_1",
56
- "~/processed/anon_tokyo/run_1",
57
- "~/processed/anon_tokyo/run_1",
58
- "~/processed/anon_tokyo/run_1",
59
- "~/processed/anon_tokyo/run_1",
60
- "~/processed/anon_tokyo/run_1",
61
- "~/processed/anon_tokyo/run_1",
62
- "~/processed/anon_tokyo/run_1",
63
- "~/processed/anon_tokyo/run_1",
64
- "~/processed/anon_tokyo/run_1",
65
- "~/processed/anon_tokyo/run_1",
66
- "~/processed/anon_tokyo/run_1",
67
- "~/processed/anon_tokyo/run_1",
68
- "~/processed/anon_tokyo/run_1",
69
- "~/processed/anon_tokyo/run_1",
70
- "~/processed/anon_tokyo/run_1",
71
- "~/processed/anon_tokyo/run_1",
72
- "~/processed/anon_tokyo/run_1",
73
- "~/processed/anon_tokyo/run_1",
74
- "~/processed/anon_tokyo/run_1",
75
- "~/processed/anon_tokyo/run_1",
76
- "~/processed/anon_tokyo/run_1",
77
- "~/processed/anon_tokyo/run_1",
78
- "~/processed/anon_tokyo/run_1",
79
- "~/processed/anon_tokyo/run_1",
80
- "~/processed/anon_tokyo/run_1",
81
- "~/processed/anon_tokyo/run_1",
82
- "~/processed/anon_tokyo/run_1",
83
- "~/processed/anon_tokyo/run_1",
84
- "~/processed/anon_tokyo/run_1",
85
- "~/processed/anon_tokyo/run_1",
86
- "~/processed/anon_tokyo/run_1",
87
- "~/processed/anon_tokyo/run_1",
88
- "~/processed/anon_tokyo/run_1",
89
- "~/processed/anon_tokyo/run_1",
90
- "~/processed/anon_tokyo/run_1",
91
- "~/processed/anon_tokyo/run_1",
92
- "~/processed/anon_tokyo/run_1",
93
- "~/processed/anon_tokyo/run_1",
94
- "~/processed/anon_tokyo/run_1",
95
- "~/processed/anon_tokyo/run_1",
96
- "~/processed/anon_tokyo/run_1",
97
- "~/processed/anon_tokyo/run_1",
98
- "~/processed/anon_tokyo/run_1",
99
- "~/processed/anon_tokyo/run_1",
100
- "~/processed/anon_tokyo/run_1",
101
- "~/processed/anon_tokyo/run_1",
102
- "~/processed/anon_tokyo/run_1",
103
- "~/processed/anon_tokyo/run_1",
104
- "~/processed/anon_tokyo/run_1",
105
- "~/processed/anon_tokyo/run_1",
106
- "~/processed/anon_tokyo/run_1",
107
- "~/processed/anon_tokyo/run_1",
108
- "~/processed/anon_tokyo/run_1",
109
- "~/processed/anon_tokyo/run_1",
110
- "~/processed/anon_tokyo/run_1",
111
- "~/processed/anon_tokyo/run_1",
112
- "~/processed/anon_tokyo/run_1",
113
- "~/processed/anon_tokyo/run_1",
114
- "~/processed/anon_tokyo/run_1",
115
- "~/processed/anon_tokyo/run_1",
116
- "~/processed/anon_tokyo/run_1",
117
- "~/processed/anon_tokyo/run_1",
118
- "~/processed/anon_tokyo/run_1",
119
- "~/processed/anon_tokyo/run_1",
120
- "~/processed/anon_tokyo/run_1",
121
- "~/processed/anon_tokyo/run_1",
122
- "~/processed/anon_tokyo/run_1",
123
- "~/processed/anon_tokyo/run_1",
124
- "~/processed/anon_tokyo/run_1",
125
- "~/processed/anon_tokyo/run_1",
126
- "~/processed/anon_tokyo/run_1",
127
- "~/processed/anon_tokyo/run_1",
128
- "~/processed/anon_tokyo/run_1",
129
- "~/processed/anon_tokyo/run_1",
130
- "~/processed/anon_tokyo/run_1",
131
- "~/processed/anon_tokyo/run_1",
132
- "~/processed/anon_tokyo/run_1",
133
- "~/processed/anon_tokyo/run_1",
134
- "~/processed/anon_tokyo/run_1",
135
- "~/processed/anon_tokyo/run_1",
136
- "~/processed/anon_tokyo/run_1",
137
- "~/processed/anon_tokyo/run_1",
138
- "~/processed/anon_tokyo/run_1",
139
- "~/processed/anon_tokyo/run_1",
140
- "~/processed/anon_tokyo/run_1",
141
- "~/processed/anon_tokyo/run_1",
142
- "~/processed/anon_tokyo/run_1",
143
- "~/processed/anon_tokyo/run_1",
144
- "~/processed/anon_tokyo/run_1",
145
- "~/processed/anon_tokyo/run_1",
146
- "~/processed/anon_tokyo/run_1",
147
- "~/processed/anon_tokyo/run_1",
148
- "~/processed/anon_tokyo/run_1",
149
- "~/processed/anon_tokyo/run_1",
150
- "~/processed/anon_tokyo/run_1",
151
- "~/processed/anon_tokyo/run_1",
152
- "~/processed/anon_tokyo/run_1",
153
- "~/processed/anon_tokyo/run_1",
154
- "~/processed/anon_tokyo/run_1",
155
- "~/processed/anon_tokyo/run_1",
156
- "~/processed/anon_tokyo/run_1",
157
- "~/processed/anon_tokyo/run_1",
158
- "~/processed/anon_tokyo/run_1",
159
- "~/processed/anon_tokyo/run_1",
160
- "~/processed/anon_tokyo/run_1",
161
- "~/processed/anon_tokyo/run_1",
162
- "~/processed/anon_tokyo/run_1",
163
- "~/processed/anon_tokyo/run_1",
164
- "~/processed/anon_tokyo/run_1",
165
- "~/processed/anon_tokyo/run_1",
166
- "~/processed/anon_tokyo/run_1",
167
- "~/processed/anon_tokyo/run_1",
168
- "~/processed/anon_tokyo/run_1",
169
- "~/processed/anon_tokyo/run_1",
170
- "~/processed/anon_tokyo/run_1",
171
- "~/processed/anon_tokyo/run_1",
172
- "~/processed/anon_tokyo/run_1",
173
- "~/processed/anon_tokyo/run_1",
174
- "~/processed/anon_tokyo/run_1",
175
- "~/processed/anon_tokyo/run_1",
176
- "~/processed/anon_tokyo/run_1",
177
- "~/processed/anon_tokyo/run_1",
178
- "~/processed/anon_tokyo/run_1",
179
- "~/processed/anon_tokyo/run_1",
180
- "~/processed/anon_tokyo/run_1",
181
- "~/processed/anon_tokyo/run_1",
182
- "~/processed/anon_tokyo/run_1",
183
- "~/processed/anon_tokyo/run_1",
184
- "~/processed/anon_tokyo/run_1",
185
- "~/processed/anon_tokyo/run_1",
186
- "~/processed/anon_tokyo/run_1",
187
- "~/processed/anon_tokyo/run_1",
188
- "~/processed/anon_tokyo/run_1",
189
- "~/processed/anon_tokyo/run_1",
190
- "~/processed/anon_tokyo/run_1",
191
- "~/processed/anon_tokyo/run_1",
192
- "~/processed/anon_tokyo/run_1",
193
- "~/processed/anon_tokyo/run_1",
194
- "~/processed/anon_tokyo/run_1",
195
- "~/processed/anon_tokyo/run_1",
196
- "~/processed/anon_tokyo/run_1",
197
- "~/processed/anon_tokyo/run_1",
198
- "~/processed/anon_tokyo/run_1",
199
- "~/processed/anon_tokyo/run_1",
200
- "~/processed/anon_tokyo/run_1",
201
- "~/processed/anon_tokyo/run_1",
202
- "~/processed/anon_tokyo/run_1",
203
- "~/processed/anon_tokyo/run_1",
204
- "~/processed/anon_tokyo/run_1",
205
- "~/processed/anon_tokyo/run_1",
206
- "~/processed/anon_tokyo/run_1",
207
- "~/processed/anon_tokyo/run_1",
208
- "~/processed/anon_tokyo/run_1",
209
- "~/processed/anon_tokyo/run_1",
210
- "~/processed/anon_tokyo/run_1",
211
- "~/processed/anon_tokyo/run_1",
212
- "~/processed/anon_tokyo/run_1",
213
- "~/processed/anon_tokyo/run_1",
214
- "~/processed/anon_tokyo/run_1",
215
- "~/processed/anon_tokyo/run_1",
216
- "~/processed/anon_tokyo/run_1",
217
- "~/processed/anon_tokyo/run_1",
218
- "~/processed/anon_tokyo/run_1",
219
- "~/processed/anon_tokyo/run_1",
220
- "~/processed/anon_tokyo/run_1",
221
- "~/processed/anon_tokyo/run_1",
222
- "~/processed/anon_tokyo/run_1",
223
- "~/processed/anon_tokyo/run_1",
224
- "~/processed/anon_tokyo/run_1",
225
- "~/processed/anon_tokyo/run_1",
226
- "~/processed/anon_tokyo/run_1",
227
- "~/processed/anon_tokyo/run_1",
228
- "~/processed/anon_tokyo/run_1",
229
- "~/processed/anon_tokyo/run_1",
230
- "~/processed/anon_tokyo/run_1",
231
- "~/processed/anon_tokyo/run_1",
232
- "~/processed/anon_tokyo/run_1",
233
- "~/processed/anon_tokyo/run_1",
234
- "~/processed/anon_tokyo/run_1",
235
- "~/processed/anon_tokyo/run_1",
236
- "~/processed/anon_tokyo/run_1",
237
- "~/processed/anon_tokyo/run_1",
238
- "~/processed/anon_tokyo/run_1",
239
- "~/processed/anon_tokyo/run_1",
240
- "~/processed/anon_tokyo/run_1",
241
- "~/processed/anon_tokyo/run_1",
242
- "~/processed/anon_tokyo/run_1",
243
- "~/processed/anon_tokyo/run_1",
244
- "~/processed/anon_tokyo/run_1",
245
- "~/processed/anon_tokyo/run_1",
246
- "~/processed/anon_tokyo/run_1",
247
- "~/processed/anon_tokyo/run_1",
248
- "~/processed/anon_tokyo/run_1",
249
- "~/processed/anon_tokyo/run_1",
250
- "~/processed/anon_tokyo/run_1",
251
- "~/processed/anon_tokyo/run_1",
252
- "~/processed/anon_tokyo/run_1",
253
- "~/processed/anon_tokyo/run_1",
254
- "~/processed/anon_tokyo/run_1",
255
- "~/processed/anon_tokyo/run_1",
256
- "~/processed/anon_tokyo/run_1",
257
- "~/processed/anon_tokyo/run_1",
258
- "~/processed/anon_tokyo/run_1",
259
- "~/processed/anon_tokyo/run_1",
260
- "~/processed/anon_tokyo/run_1",
261
- "~/processed/anon_tokyo/run_1",
262
- "~/processed/anon_tokyo/run_1",
263
- "~/processed/anon_tokyo/run_1",
264
- "~/processed/anon_tokyo/run_1",
265
- "~/processed/anon_tokyo/run_1",
266
- "~/processed/anon_tokyo/run_1",
267
- "~/processed/anon_tokyo/run_1",
268
- "~/processed/anon_tokyo/run_1",
269
- "~/processed/anon_tokyo/run_1",
270
- "~/processed/anon_tokyo/run_1",
271
- "~/processed/anon_tokyo/run_1",
272
- "~/processed/anon_tokyo/run_1",
273
- "~/processed/anon_tokyo/run_1",
274
- "~/processed/anon_tokyo/run_1",
275
- "~/processed/anon_tokyo/run_1",
276
- "~/processed/anon_tokyo/run_1",
277
- "~/processed/anon_tokyo/run_1",
278
- "~/processed/anon_tokyo/run_1",
279
- "~/processed/anon_tokyo/run_1",
280
- "~/processed/anon_tokyo/run_1",
281
- "~/processed/anon_tokyo/run_1",
282
- "~/processed/anon_tokyo/run_1",
283
- "~/processed/anon_tokyo/run_1",
284
- "~/processed/anon_tokyo/run_1",
285
- "~/processed/anon_tokyo/run_1",
286
- "~/processed/anon_tokyo/run_1",
287
- "~/processed/anon_tokyo/run_1",
288
- "~/processed/anon_tokyo/run_1",
289
- "~/processed/anon_tokyo/run_1",
290
- "~/processed/anon_tokyo/run_1",
291
- "~/processed/anon_tokyo/run_1",
292
- "~/processed/anon_tokyo/run_1",
293
- "~/processed/anon_tokyo/run_1",
294
- "~/processed/anon_tokyo/run_1",
295
- "~/processed/anon_tokyo/run_1",
296
- "~/processed/anon_tokyo/run_1",
297
- "~/processed/anon_tokyo/run_1",
298
- "~/processed/anon_tokyo/run_1",
299
- "~/processed/anon_tokyo/run_1",
300
- "~/processed/anon_tokyo/run_1",
301
- "~/processed/anon_tokyo/run_1",
302
- "~/processed/anon_tokyo/run_1",
303
- "~/processed/anon_tokyo/run_1",
304
- "~/processed/anon_tokyo/run_1",
305
- "~/processed/anon_tokyo/run_1",
306
- "~/processed/anon_tokyo/run_1",
307
- "~/processed/anon_tokyo/run_1",
308
- "~/processed/anon_tokyo/run_1",
309
- "~/processed/anon_tokyo/run_1",
310
- "~/processed/anon_tokyo/run_1",
311
- "~/processed/anon_tokyo/run_1",
312
- "~/processed/anon_tokyo/run_1",
313
- "~/processed/anon_tokyo/run_1",
314
- "~/processed/anon_tokyo/run_1",
315
- "~/processed/anon_tokyo/run_1",
316
- "~/processed/anon_tokyo/run_1",
317
- "~/processed/anon_tokyo/run_1",
318
- "~/processed/anon_tokyo/run_1",
319
- "~/processed/anon_tokyo/run_1",
320
- "~/processed/anon_tokyo/run_1",
321
- "~/processed/anon_tokyo/run_1",
322
- "~/processed/anon_tokyo/run_1",
323
- "~/processed/anon_tokyo/run_1",
324
- "~/processed/anon_tokyo/run_1",
325
- "~/processed/anon_tokyo/run_1",
326
- "~/processed/anon_tokyo/run_1",
327
- "~/processed/anon_tokyo/run_1",
328
- "~/processed/anon_tokyo/run_1",
329
- "~/processed/anon_tokyo/run_1",
330
- "~/processed/anon_tokyo/run_1",
331
- "~/processed/anon_tokyo/run_1",
332
- "~/processed/anon_tokyo/run_1",
333
- "~/processed/anon_tokyo/run_1",
334
- "~/processed/anon_tokyo/run_1",
335
- "~/processed/anon_tokyo/run_1",
336
- "~/processed/anon_tokyo/run_1",
337
- "~/processed/anon_tokyo/run_1",
338
- "~/processed/anon_tokyo/run_1",
339
- "~/processed/anon_tokyo/run_1",
340
- "~/processed/anon_tokyo/run_1",
341
- "~/processed/anon_tokyo/run_1",
342
- "~/processed/anon_tokyo/run_1",
343
- "~/processed/anon_tokyo/run_1",
344
- "~/processed/anon_tokyo/run_1",
345
- "~/processed/anon_tokyo/run_1",
346
- "~/processed/anon_tokyo/run_1",
347
- "~/processed/anon_tokyo/run_1",
348
- "~/processed/anon_tokyo/run_1",
349
- "~/processed/anon_tokyo/run_1",
350
- "~/processed/anon_tokyo/run_1",
351
- "~/processed/anon_tokyo/run_1",
352
- "~/processed/anon_tokyo/run_1",
353
- "~/processed/anon_tokyo/run_1",
354
- "~/processed/anon_tokyo/run_1",
355
- "~/processed/anon_tokyo/run_1",
356
- "~/processed/anon_tokyo/run_1",
357
- "~/processed/anon_tokyo/run_1",
358
- "~/processed/anon_tokyo/run_1",
359
- "~/processed/anon_tokyo/run_1",
360
- "~/processed/anon_tokyo/run_1",
361
- "~/processed/anon_tokyo/run_1",
362
- "~/processed/anon_tokyo/run_1",
363
- "~/processed/anon_tokyo/run_1",
364
- "~/processed/anon_tokyo/run_1",
365
- "~/processed/anon_tokyo/run_1",
366
- "~/processed/anon_tokyo/run_1",
367
- "~/processed/anon_tokyo/run_1",
368
- "~/processed/anon_tokyo/run_1",
369
- "~/processed/anon_tokyo/run_1",
370
- "~/processed/anon_tokyo/run_1",
371
- "~/processed/anon_tokyo/run_1",
372
- "~/processed/anon_tokyo/run_1",
373
- "~/processed/anon_tokyo/run_1",
374
- "~/processed/anon_tokyo/run_1",
375
- "~/processed/anon_tokyo/run_1",
376
- "~/processed/anon_tokyo/run_1",
377
- "~/processed/anon_tokyo/run_1",
378
- "~/processed/anon_tokyo/run_1",
379
- "~/processed/anon_tokyo/run_1",
380
- "~/processed/anon_tokyo/run_1",
381
- "~/processed/anon_tokyo/run_1",
382
- "~/processed/anon_tokyo/run_1",
383
- "~/processed/anon_tokyo/run_1",
384
- "~/processed/anon_tokyo/run_1",
385
- "~/processed/anon_tokyo/run_1",
386
- "~/processed/anon_tokyo/run_1",
387
- "~/processed/anon_tokyo/run_1",
388
- "~/processed/anon_tokyo/run_1",
389
- "~/processed/anon_tokyo/run_1",
390
- "~/processed/anon_tokyo/run_1",
391
- "~/processed/anon_tokyo/run_1",
392
- "~/processed/anon_tokyo/run_1"
393
- ],
394
- "dry_files": [
395
- "/data/internal/anon_tokyo/togawa_group.wav",
396
- "/data/internal/anon_tokyo/togawa_group.wav",
397
- "/data/internal/anon_tokyo/togawa_group.wav",
398
- "/data/internal/anon_tokyo/togawa_group.wav",
399
- "/data/internal/anon_tokyo/togawa_group.wav",
400
- "/data/internal/anon_tokyo/togawa_group.wav",
401
- "/data/internal/anon_tokyo/togawa_group.wav",
402
- "/data/internal/anon_tokyo/togawa_group.wav",
403
- "/data/internal/anon_tokyo/togawa_group.wav",
404
- "/data/internal/anon_tokyo/togawa_group.wav",
405
- "/data/internal/anon_tokyo/togawa_group.wav",
406
- "/data/internal/anon_tokyo/togawa_group.wav",
407
- "/data/internal/anon_tokyo/togawa_group.wav",
408
- "/data/internal/anon_tokyo/togawa_group.wav",
409
- "/data/internal/anon_tokyo/togawa_group.wav",
410
- "/data/internal/anon_tokyo/togawa_group.wav",
411
- "/data/internal/anon_tokyo/togawa_group.wav",
412
- "/data/internal/anon_tokyo/togawa_group.wav",
413
- "/data/internal/anon_tokyo/togawa_group.wav",
414
- "/data/internal/anon_tokyo/togawa_group.wav",
415
- "/data/internal/anon_tokyo/togawa_group.wav",
416
- "/data/internal/anon_tokyo/togawa_group.wav",
417
- "/data/internal/anon_tokyo/togawa_group.wav",
418
- "/data/internal/anon_tokyo/togawa_group.wav",
419
- "/data/internal/anon_tokyo/togawa_group.wav",
420
- "/data/internal/anon_tokyo/togawa_group.wav",
421
- "/data/internal/anon_tokyo/togawa_group.wav",
422
- "/data/internal/anon_tokyo/togawa_group.wav",
423
- "/data/internal/anon_tokyo/togawa_group.wav",
424
- "/data/internal/anon_tokyo/togawa_group.wav",
425
- "/data/internal/anon_tokyo/togawa_group.wav",
426
- "/data/internal/anon_tokyo/togawa_group.wav",
427
- "/data/internal/anon_tokyo/togawa_group.wav",
428
- "/data/internal/anon_tokyo/togawa_group.wav",
429
- "/data/internal/anon_tokyo/togawa_group.wav",
430
- "/data/internal/anon_tokyo/togawa_group.wav",
431
- "/data/internal/anon_tokyo/togawa_group.wav",
432
- "/data/internal/anon_tokyo/togawa_group.wav",
433
- "/data/internal/anon_tokyo/togawa_group.wav",
434
- "/data/internal/anon_tokyo/togawa_group.wav",
435
- "/data/internal/anon_tokyo/togawa_group.wav",
436
- "/data/internal/anon_tokyo/togawa_group.wav",
437
- "/data/internal/anon_tokyo/togawa_group.wav",
438
- "/data/internal/anon_tokyo/togawa_group.wav",
439
- "/data/internal/anon_tokyo/togawa_group.wav",
440
- "/data/internal/anon_tokyo/togawa_group.wav",
441
- "/data/internal/anon_tokyo/togawa_group.wav",
442
- "/data/internal/anon_tokyo/togawa_group.wav",
443
- "/data/internal/anon_tokyo/togawa_group.wav",
444
- "/data/internal/anon_tokyo/togawa_group.wav",
445
- "/data/internal/anon_tokyo/togawa_group.wav",
446
- "/data/internal/anon_tokyo/togawa_group.wav",
447
- "/data/internal/anon_tokyo/togawa_group.wav",
448
- "/data/internal/anon_tokyo/togawa_group.wav",
449
- "/data/internal/anon_tokyo/togawa_group.wav",
450
- "/data/internal/anon_tokyo/togawa_group.wav",
451
- "/data/internal/anon_tokyo/togawa_group.wav",
452
- "/data/internal/anon_tokyo/togawa_group.wav",
453
- "/data/internal/anon_tokyo/togawa_group.wav",
454
- "/data/internal/anon_tokyo/togawa_group.wav",
455
- "/data/internal/anon_tokyo/togawa_group.wav",
456
- "/data/internal/anon_tokyo/togawa_group.wav",
457
- "/data/internal/anon_tokyo/togawa_group.wav",
458
- "/data/internal/anon_tokyo/togawa_group.wav",
459
- "/data/internal/anon_tokyo/togawa_group.wav",
460
- "/data/internal/anon_tokyo/togawa_group.wav",
461
- "/data/internal/anon_tokyo/togawa_group.wav",
462
- "/data/internal/anon_tokyo/togawa_group.wav",
463
- "/data/internal/anon_tokyo/togawa_group.wav",
464
- "/data/internal/anon_tokyo/togawa_group.wav",
465
- "/data/internal/anon_tokyo/togawa_group.wav",
466
- "/data/internal/anon_tokyo/togawa_group.wav",
467
- "/data/internal/anon_tokyo/togawa_group.wav",
468
- "/data/internal/anon_tokyo/togawa_group.wav",
469
- "/data/internal/anon_tokyo/togawa_group.wav",
470
- "/data/internal/anon_tokyo/togawa_group.wav",
471
- "/data/internal/anon_tokyo/togawa_group.wav",
472
- "/data/internal/anon_tokyo/togawa_group.wav",
473
- "/data/internal/anon_tokyo/togawa_group.wav",
474
- "/data/internal/anon_tokyo/togawa_group.wav",
475
- "/data/internal/anon_tokyo/togawa_group.wav",
476
- "/data/internal/anon_tokyo/togawa_group.wav",
477
- "/data/internal/anon_tokyo/togawa_group.wav",
478
- "/data/internal/anon_tokyo/togawa_group.wav",
479
- "/data/internal/anon_tokyo/togawa_group.wav",
480
- "/data/internal/anon_tokyo/togawa_group.wav",
481
- "/data/internal/anon_tokyo/togawa_group.wav",
482
- "/data/internal/anon_tokyo/togawa_group.wav",
483
- "/data/internal/anon_tokyo/togawa_group.wav",
484
- "/data/internal/anon_tokyo/togawa_group.wav",
485
- "/data/internal/anon_tokyo/togawa_group.wav",
486
- "/data/internal/anon_tokyo/togawa_group.wav",
487
- "/data/internal/anon_tokyo/togawa_group.wav",
488
- "/data/internal/anon_tokyo/togawa_group.wav",
489
- "/data/internal/anon_tokyo/togawa_group.wav",
490
- "/data/internal/anon_tokyo/togawa_group.wav",
491
- "/data/internal/anon_tokyo/togawa_group.wav",
492
- "/data/internal/anon_tokyo/togawa_group.wav",
493
- "/data/internal/anon_tokyo/togawa_group.wav",
494
- "/data/internal/anon_tokyo/togawa_group.wav",
495
- "/data/internal/anon_tokyo/togawa_group.wav",
496
- "/data/internal/anon_tokyo/togawa_group.wav",
497
- "/data/internal/anon_tokyo/togawa_group.wav",
498
- "/data/internal/anon_tokyo/togawa_group.wav",
499
- "/data/internal/anon_tokyo/togawa_group.wav",
500
- "/data/internal/anon_tokyo/togawa_group.wav",
501
- "/data/internal/anon_tokyo/togawa_group.wav",
502
- "/data/internal/anon_tokyo/togawa_group.wav",
503
- "/data/internal/anon_tokyo/togawa_group.wav",
504
- "/data/internal/anon_tokyo/togawa_group.wav",
505
- "/data/internal/anon_tokyo/togawa_group.wav",
506
- "/data/internal/anon_tokyo/togawa_group.wav",
507
- "/data/internal/anon_tokyo/togawa_group.wav",
508
- "/data/internal/anon_tokyo/togawa_group.wav",
509
- "/data/internal/anon_tokyo/togawa_group.wav",
510
- "/data/internal/anon_tokyo/togawa_group.wav",
511
- "/data/internal/anon_tokyo/togawa_group.wav",
512
- "/data/internal/anon_tokyo/togawa_group.wav",
513
- "/data/internal/anon_tokyo/togawa_group.wav",
514
- "/data/internal/anon_tokyo/togawa_group.wav",
515
- "/data/internal/anon_tokyo/togawa_group.wav",
516
- "/data/internal/anon_tokyo/togawa_group.wav",
517
- "/data/internal/anon_tokyo/togawa_group.wav",
518
- "/data/internal/anon_tokyo/togawa_group.wav",
519
- "/data/internal/anon_tokyo/togawa_group.wav",
520
- "/data/internal/anon_tokyo/togawa_group.wav",
521
- "/data/internal/anon_tokyo/togawa_group.wav",
522
- "/data/internal/anon_tokyo/togawa_group.wav",
523
- "/data/internal/anon_tokyo/togawa_group.wav",
524
- "/data/internal/anon_tokyo/togawa_group.wav",
525
- "/data/internal/anon_tokyo/togawa_group.wav",
526
- "/data/internal/anon_tokyo/togawa_group.wav",
527
- "/data/internal/anon_tokyo/togawa_group.wav",
528
- "/data/internal/anon_tokyo/togawa_group.wav",
529
- "/data/internal/anon_tokyo/togawa_group.wav",
530
- "/data/internal/anon_tokyo/togawa_group.wav",
531
- "/data/internal/anon_tokyo/togawa_group.wav",
532
- "/data/internal/anon_tokyo/togawa_group.wav",
533
- "/data/internal/anon_tokyo/togawa_group.wav",
534
- "/data/internal/anon_tokyo/togawa_group.wav",
535
- "/data/internal/anon_tokyo/togawa_group.wav",
536
- "/data/internal/anon_tokyo/togawa_group.wav",
537
- "/data/internal/anon_tokyo/togawa_group.wav",
538
- "/data/internal/anon_tokyo/togawa_group.wav",
539
- "/data/internal/anon_tokyo/togawa_group.wav",
540
- "/data/internal/anon_tokyo/togawa_group.wav",
541
- "/data/internal/anon_tokyo/togawa_group.wav",
542
- "/data/internal/anon_tokyo/togawa_group.wav",
543
- "/data/internal/anon_tokyo/togawa_group.wav",
544
- "/data/internal/anon_tokyo/togawa_group.wav",
545
- "/data/internal/anon_tokyo/togawa_group.wav",
546
- "/data/internal/anon_tokyo/togawa_group.wav",
547
- "/data/internal/anon_tokyo/togawa_group.wav",
548
- "/data/internal/anon_tokyo/togawa_group.wav",
549
- "/data/internal/anon_tokyo/togawa_group.wav",
550
- "/data/internal/anon_tokyo/togawa_group.wav",
551
- "/data/internal/anon_tokyo/togawa_group.wav",
552
- "/data/internal/anon_tokyo/togawa_group.wav",
553
- "/data/internal/anon_tokyo/togawa_group.wav",
554
- "/data/internal/anon_tokyo/togawa_group.wav",
555
- "/data/internal/anon_tokyo/togawa_group.wav",
556
- "/data/internal/anon_tokyo/togawa_group.wav",
557
- "/data/internal/anon_tokyo/togawa_group.wav",
558
- "/data/internal/anon_tokyo/togawa_group.wav",
559
- "/data/internal/anon_tokyo/togawa_group.wav",
560
- "/data/internal/anon_tokyo/togawa_group.wav",
561
- "/data/internal/anon_tokyo/togawa_group.wav",
562
- "/data/internal/anon_tokyo/togawa_group.wav",
563
- "/data/internal/anon_tokyo/togawa_group.wav",
564
- "/data/internal/anon_tokyo/togawa_group.wav",
565
- "/data/internal/anon_tokyo/togawa_group.wav",
566
- "/data/internal/anon_tokyo/togawa_group.wav",
567
- "/data/internal/anon_tokyo/togawa_group.wav",
568
- "/data/internal/anon_tokyo/togawa_group.wav",
569
- "/data/internal/anon_tokyo/togawa_group.wav",
570
- "/data/internal/anon_tokyo/togawa_group.wav",
571
- "/data/internal/anon_tokyo/togawa_group.wav",
572
- "/data/internal/anon_tokyo/togawa_group.wav",
573
- "/data/internal/anon_tokyo/togawa_group.wav",
574
- "/data/internal/anon_tokyo/togawa_group.wav",
575
- "/data/internal/anon_tokyo/togawa_group.wav",
576
- "/data/internal/anon_tokyo/togawa_group.wav",
577
- "/data/internal/anon_tokyo/togawa_group.wav",
578
- "/data/internal/anon_tokyo/togawa_group.wav",
579
- "/data/internal/anon_tokyo/togawa_group.wav",
580
- "/data/internal/anon_tokyo/togawa_group.wav",
581
- "/data/internal/anon_tokyo/togawa_group.wav",
582
- "/data/internal/anon_tokyo/togawa_group.wav",
583
- "/data/internal/anon_tokyo/togawa_group.wav",
584
- "/data/internal/anon_tokyo/togawa_group.wav",
585
- "/data/internal/anon_tokyo/togawa_group.wav",
586
- "/data/internal/anon_tokyo/togawa_group.wav",
587
- "/data/internal/anon_tokyo/togawa_group.wav",
588
- "/data/internal/anon_tokyo/togawa_group.wav",
589
- "/data/internal/anon_tokyo/togawa_group.wav",
590
- "/data/internal/anon_tokyo/togawa_group.wav",
591
- "/data/internal/anon_tokyo/togawa_group.wav",
592
- "/data/internal/anon_tokyo/togawa_group.wav",
593
- "/data/internal/anon_tokyo/togawa_group.wav",
594
- "/data/internal/anon_tokyo/togawa_group.wav",
595
- "/data/internal/anon_tokyo/togawa_group.wav",
596
- "/data/internal/anon_tokyo/togawa_group.wav",
597
- "/data/internal/anon_tokyo/togawa_group.wav",
598
- "/data/internal/anon_tokyo/togawa_group.wav",
599
- "/data/internal/anon_tokyo/togawa_group.wav",
600
- "/data/internal/anon_tokyo/togawa_group.wav",
601
- "/data/internal/anon_tokyo/togawa_group.wav",
602
- "/data/internal/anon_tokyo/togawa_group.wav",
603
- "/data/internal/anon_tokyo/togawa_group.wav",
604
- "/data/internal/anon_tokyo/togawa_group.wav",
605
- "/data/internal/anon_tokyo/togawa_group.wav",
606
- "/data/internal/anon_tokyo/togawa_group.wav",
607
- "/data/internal/anon_tokyo/togawa_group.wav",
608
- "/data/internal/anon_tokyo/togawa_group.wav",
609
- "/data/internal/anon_tokyo/togawa_group.wav",
610
- "/data/internal/anon_tokyo/togawa_group.wav",
611
- "/data/internal/anon_tokyo/togawa_group.wav",
612
- "/data/internal/anon_tokyo/togawa_group.wav",
613
- "/data/internal/anon_tokyo/togawa_group.wav",
614
- "/data/internal/anon_tokyo/togawa_group.wav",
615
- "/data/internal/anon_tokyo/togawa_group.wav",
616
- "/data/internal/anon_tokyo/togawa_group.wav",
617
- "/data/internal/anon_tokyo/togawa_group.wav",
618
- "/data/internal/anon_tokyo/togawa_group.wav",
619
- "/data/internal/anon_tokyo/togawa_group.wav",
620
- "/data/internal/anon_tokyo/togawa_group.wav",
621
- "/data/internal/anon_tokyo/togawa_group.wav",
622
- "/data/internal/anon_tokyo/togawa_group.wav",
623
- "/data/internal/anon_tokyo/togawa_group.wav",
624
- "/data/internal/anon_tokyo/togawa_group.wav",
625
- "/data/internal/anon_tokyo/togawa_group.wav",
626
- "/data/internal/anon_tokyo/togawa_group.wav",
627
- "/data/internal/anon_tokyo/togawa_group.wav",
628
- "/data/internal/anon_tokyo/togawa_group.wav",
629
- "/data/internal/anon_tokyo/togawa_group.wav",
630
- "/data/internal/anon_tokyo/togawa_group.wav",
631
- "/data/internal/anon_tokyo/togawa_group.wav",
632
- "/data/internal/anon_tokyo/togawa_group.wav",
633
- "/data/internal/anon_tokyo/togawa_group.wav",
634
- "/data/internal/anon_tokyo/togawa_group.wav",
635
- "/data/internal/anon_tokyo/togawa_group.wav",
636
- "/data/internal/anon_tokyo/togawa_group.wav",
637
- "/data/internal/anon_tokyo/togawa_group.wav",
638
- "/data/internal/anon_tokyo/togawa_group.wav",
639
- "/data/internal/anon_tokyo/togawa_group.wav",
640
- "/data/internal/anon_tokyo/togawa_group.wav",
641
- "/data/internal/anon_tokyo/togawa_group.wav",
642
- "/data/internal/anon_tokyo/togawa_group.wav",
643
- "/data/internal/anon_tokyo/togawa_group.wav",
644
- "/data/internal/anon_tokyo/togawa_group.wav",
645
- "/data/internal/anon_tokyo/togawa_group.wav",
646
- "/data/internal/anon_tokyo/togawa_group.wav",
647
- "/data/internal/anon_tokyo/togawa_group.wav",
648
- "/data/internal/anon_tokyo/togawa_group.wav",
649
- "/data/internal/anon_tokyo/togawa_group.wav",
650
- "/data/internal/anon_tokyo/togawa_group.wav",
651
- "/data/internal/anon_tokyo/togawa_group.wav",
652
- "/data/internal/anon_tokyo/togawa_group.wav",
653
- "/data/internal/anon_tokyo/togawa_group.wav",
654
- "/data/internal/anon_tokyo/togawa_group.wav",
655
- "/data/internal/anon_tokyo/togawa_group.wav",
656
- "/data/internal/anon_tokyo/togawa_group.wav",
657
- "/data/internal/anon_tokyo/togawa_group.wav",
658
- "/data/internal/anon_tokyo/togawa_group.wav",
659
- "/data/internal/anon_tokyo/togawa_group.wav",
660
- "/data/internal/anon_tokyo/togawa_group.wav",
661
- "/data/internal/anon_tokyo/togawa_group.wav",
662
- "/data/internal/anon_tokyo/togawa_group.wav",
663
- "/data/internal/anon_tokyo/togawa_group.wav",
664
- "/data/internal/anon_tokyo/togawa_group.wav",
665
- "/data/internal/anon_tokyo/togawa_group.wav",
666
- "/data/internal/anon_tokyo/togawa_group.wav",
667
- "/data/internal/anon_tokyo/togawa_group.wav",
668
- "/data/internal/anon_tokyo/togawa_group.wav",
669
- "/data/internal/anon_tokyo/togawa_group.wav",
670
- "/data/internal/anon_tokyo/togawa_group.wav",
671
- "/data/internal/anon_tokyo/togawa_group.wav",
672
- "/data/internal/anon_tokyo/togawa_group.wav",
673
- "/data/internal/anon_tokyo/togawa_group.wav",
674
- "/data/internal/anon_tokyo/togawa_group.wav",
675
- "/data/internal/anon_tokyo/togawa_group.wav",
676
- "/data/internal/anon_tokyo/togawa_group.wav",
677
- "/data/internal/anon_tokyo/togawa_group.wav",
678
- "/data/internal/anon_tokyo/togawa_group.wav",
679
- "/data/internal/anon_tokyo/togawa_group.wav",
680
- "/data/internal/anon_tokyo/togawa_group.wav",
681
- "/data/internal/anon_tokyo/togawa_group.wav",
682
- "/data/internal/anon_tokyo/togawa_group.wav",
683
- "/data/internal/anon_tokyo/togawa_group.wav",
684
- "/data/internal/anon_tokyo/togawa_group.wav",
685
- "/data/internal/anon_tokyo/togawa_group.wav",
686
- "/data/internal/anon_tokyo/togawa_group.wav",
687
- "/data/internal/anon_tokyo/togawa_group.wav",
688
- "/data/internal/anon_tokyo/togawa_group.wav",
689
- "/data/internal/anon_tokyo/togawa_group.wav",
690
- "/data/internal/anon_tokyo/togawa_group.wav",
691
- "/data/internal/anon_tokyo/togawa_group.wav",
692
- "/data/internal/anon_tokyo/togawa_group.wav",
693
- "/data/internal/anon_tokyo/togawa_group.wav",
694
- "/data/internal/anon_tokyo/togawa_group.wav",
695
- "/data/internal/anon_tokyo/togawa_group.wav",
696
- "/data/internal/anon_tokyo/togawa_group.wav",
697
- "/data/internal/anon_tokyo/togawa_group.wav",
698
- "/data/internal/anon_tokyo/togawa_group.wav",
699
- "/data/internal/anon_tokyo/togawa_group.wav",
700
- "/data/internal/anon_tokyo/togawa_group.wav",
701
- "/data/internal/anon_tokyo/togawa_group.wav",
702
- "/data/internal/anon_tokyo/togawa_group.wav",
703
- "/data/internal/anon_tokyo/togawa_group.wav",
704
- "/data/internal/anon_tokyo/togawa_group.wav",
705
- "/data/internal/anon_tokyo/togawa_group.wav",
706
- "/data/internal/anon_tokyo/togawa_group.wav",
707
- "/data/internal/anon_tokyo/togawa_group.wav",
708
- "/data/internal/anon_tokyo/togawa_group.wav",
709
- "/data/internal/anon_tokyo/togawa_group.wav",
710
- "/data/internal/anon_tokyo/togawa_group.wav",
711
- "/data/internal/anon_tokyo/togawa_group.wav",
712
- "/data/internal/anon_tokyo/togawa_group.wav",
713
- "/data/internal/anon_tokyo/togawa_group.wav",
714
- "/data/internal/anon_tokyo/togawa_group.wav",
715
- "/data/internal/anon_tokyo/togawa_group.wav",
716
- "/data/internal/anon_tokyo/togawa_group.wav",
717
- "/data/internal/anon_tokyo/togawa_group.wav",
718
- "/data/internal/anon_tokyo/togawa_group.wav",
719
- "/data/internal/anon_tokyo/togawa_group.wav",
720
- "/data/internal/anon_tokyo/togawa_group.wav",
721
- "/data/internal/anon_tokyo/togawa_group.wav",
722
- "/data/internal/anon_tokyo/togawa_group.wav",
723
- "/data/internal/anon_tokyo/togawa_group.wav",
724
- "/data/internal/anon_tokyo/togawa_group.wav",
725
- "/data/internal/anon_tokyo/togawa_group.wav",
726
- "/data/internal/anon_tokyo/togawa_group.wav",
727
- "/data/internal/anon_tokyo/togawa_group.wav",
728
- "/data/internal/anon_tokyo/togawa_group.wav",
729
- "/data/internal/anon_tokyo/togawa_group.wav",
730
- "/data/internal/anon_tokyo/togawa_group.wav",
731
- "/data/internal/anon_tokyo/togawa_group.wav",
732
- "/data/internal/anon_tokyo/togawa_group.wav",
733
- "/data/internal/anon_tokyo/togawa_group.wav",
734
- "/data/internal/anon_tokyo/togawa_group.wav",
735
- "/data/internal/anon_tokyo/togawa_group.wav",
736
- "/data/internal/anon_tokyo/togawa_group.wav",
737
- "/data/internal/anon_tokyo/togawa_group.wav",
738
- "/data/internal/anon_tokyo/togawa_group.wav",
739
- "/data/internal/anon_tokyo/togawa_group.wav",
740
- "/data/internal/anon_tokyo/togawa_group.wav",
741
- "/data/internal/anon_tokyo/togawa_group.wav",
742
- "/data/internal/anon_tokyo/togawa_group.wav",
743
- "/data/internal/anon_tokyo/togawa_group.wav",
744
- "/data/internal/anon_tokyo/togawa_group.wav",
745
- "/data/internal/anon_tokyo/togawa_group.wav",
746
- "/data/internal/anon_tokyo/togawa_group.wav",
747
- "/data/internal/anon_tokyo/togawa_group.wav",
748
- "/data/internal/anon_tokyo/togawa_group.wav",
749
- "/data/internal/anon_tokyo/togawa_group.wav",
750
- "/data/internal/anon_tokyo/togawa_group.wav",
751
- "/data/internal/anon_tokyo/togawa_group.wav",
752
- "/data/internal/anon_tokyo/togawa_group.wav",
753
- "/data/internal/anon_tokyo/togawa_group.wav",
754
- "/data/internal/anon_tokyo/togawa_group.wav",
755
- "/data/internal/anon_tokyo/togawa_group.wav",
756
- "/data/internal/anon_tokyo/togawa_group.wav",
757
- "/data/internal/anon_tokyo/togawa_group.wav",
758
- "/data/internal/anon_tokyo/togawa_group.wav",
759
- "/data/internal/anon_tokyo/togawa_group.wav",
760
- "/data/internal/anon_tokyo/togawa_group.wav",
761
- "/data/internal/anon_tokyo/togawa_group.wav",
762
- "/data/internal/anon_tokyo/togawa_group.wav",
763
- "/data/internal/anon_tokyo/togawa_group.wav",
764
- "/data/internal/anon_tokyo/togawa_group.wav",
765
- "/data/internal/anon_tokyo/togawa_group.wav",
766
- "/data/internal/anon_tokyo/togawa_group.wav",
767
- "/data/internal/anon_tokyo/togawa_group.wav",
768
- "/data/internal/anon_tokyo/togawa_group.wav",
769
- "/data/internal/anon_tokyo/togawa_group.wav",
770
- "/data/internal/anon_tokyo/togawa_group.wav",
771
- "/data/internal/anon_tokyo/togawa_group.wav",
772
- "/data/internal/anon_tokyo/togawa_group.wav",
773
- "/data/internal/anon_tokyo/togawa_group.wav",
774
- "/data/internal/anon_tokyo/togawa_group.wav",
775
- "/data/internal/anon_tokyo/togawa_group.wav",
776
- "/data/internal/anon_tokyo/togawa_group.wav",
777
- "/data/internal/anon_tokyo/togawa_group.wav",
778
- "/data/internal/anon_tokyo/togawa_group.wav",
779
- "/data/internal/anon_tokyo/togawa_group.wav"
780
- ],
781
- "wet_files": [
782
- "/data/internal/anon_tokyo/togawa_group.wav",
783
- "/data/internal/anon_tokyo/togawa_group.wav",
784
- "/data/internal/anon_tokyo/togawa_group.wav",
785
- "/data/internal/anon_tokyo/togawa_group.wav",
786
- "/data/internal/anon_tokyo/togawa_group.wav",
787
- "/data/internal/anon_tokyo/togawa_group.wav",
788
- "/data/internal/anon_tokyo/togawa_group.wav",
789
- "/data/internal/anon_tokyo/togawa_group.wav",
790
- "/data/internal/anon_tokyo/togawa_group.wav",
791
- "/data/internal/anon_tokyo/togawa_group.wav",
792
- "/data/internal/anon_tokyo/togawa_group.wav",
793
- "/data/internal/anon_tokyo/togawa_group.wav",
794
- "/data/internal/anon_tokyo/togawa_group.wav",
795
- "/data/internal/anon_tokyo/togawa_group.wav",
796
- "/data/internal/anon_tokyo/togawa_group.wav",
797
- "/data/internal/anon_tokyo/togawa_group.wav",
798
- "/data/internal/anon_tokyo/togawa_group.wav",
799
- "/data/internal/anon_tokyo/togawa_group.wav",
800
- "/data/internal/anon_tokyo/togawa_group.wav",
801
- "/data/internal/anon_tokyo/togawa_group.wav",
802
- "/data/internal/anon_tokyo/togawa_group.wav",
803
- "/data/internal/anon_tokyo/togawa_group.wav",
804
- "/data/internal/anon_tokyo/togawa_group.wav",
805
- "/data/internal/anon_tokyo/togawa_group.wav",
806
- "/data/internal/anon_tokyo/togawa_group.wav",
807
- "/data/internal/anon_tokyo/togawa_group.wav",
808
- "/data/internal/anon_tokyo/togawa_group.wav",
809
- "/data/internal/anon_tokyo/togawa_group.wav",
810
- "/data/internal/anon_tokyo/togawa_group.wav",
811
- "/data/internal/anon_tokyo/togawa_group.wav",
812
- "/data/internal/anon_tokyo/togawa_group.wav",
813
- "/data/internal/anon_tokyo/togawa_group.wav",
814
- "/data/internal/anon_tokyo/togawa_group.wav",
815
- "/data/internal/anon_tokyo/togawa_group.wav",
816
- "/data/internal/anon_tokyo/togawa_group.wav",
817
- "/data/internal/anon_tokyo/togawa_group.wav",
818
- "/data/internal/anon_tokyo/togawa_group.wav",
819
- "/data/internal/anon_tokyo/togawa_group.wav",
820
- "/data/internal/anon_tokyo/togawa_group.wav",
821
- "/data/internal/anon_tokyo/togawa_group.wav",
822
- "/data/internal/anon_tokyo/togawa_group.wav",
823
- "/data/internal/anon_tokyo/togawa_group.wav",
824
- "/data/internal/anon_tokyo/togawa_group.wav",
825
- "/data/internal/anon_tokyo/togawa_group.wav",
826
- "/data/internal/anon_tokyo/togawa_group.wav",
827
- "/data/internal/anon_tokyo/togawa_group.wav",
828
- "/data/internal/anon_tokyo/togawa_group.wav",
829
- "/data/internal/anon_tokyo/togawa_group.wav",
830
- "/data/internal/anon_tokyo/togawa_group.wav",
831
- "/data/internal/anon_tokyo/togawa_group.wav",
832
- "/data/internal/anon_tokyo/togawa_group.wav",
833
- "/data/internal/anon_tokyo/togawa_group.wav",
834
- "/data/internal/anon_tokyo/togawa_group.wav",
835
- "/data/internal/anon_tokyo/togawa_group.wav",
836
- "/data/internal/anon_tokyo/togawa_group.wav",
837
- "/data/internal/anon_tokyo/togawa_group.wav",
838
- "/data/internal/anon_tokyo/togawa_group.wav",
839
- "/data/internal/anon_tokyo/togawa_group.wav",
840
- "/data/internal/anon_tokyo/togawa_group.wav",
841
- "/data/internal/anon_tokyo/togawa_group.wav",
842
- "/data/internal/anon_tokyo/togawa_group.wav",
843
- "/data/internal/anon_tokyo/togawa_group.wav",
844
- "/data/internal/anon_tokyo/togawa_group.wav",
845
- "/data/internal/anon_tokyo/togawa_group.wav",
846
- "/data/internal/anon_tokyo/togawa_group.wav",
847
- "/data/internal/anon_tokyo/togawa_group.wav",
848
- "/data/internal/anon_tokyo/togawa_group.wav",
849
- "/data/internal/anon_tokyo/togawa_group.wav",
850
- "/data/internal/anon_tokyo/togawa_group.wav",
851
- "/data/internal/anon_tokyo/togawa_group.wav",
852
- "/data/internal/anon_tokyo/togawa_group.wav",
853
- "/data/internal/anon_tokyo/togawa_group.wav",
854
- "/data/internal/anon_tokyo/togawa_group.wav",
855
- "/data/internal/anon_tokyo/togawa_group.wav",
856
- "/data/internal/anon_tokyo/togawa_group.wav",
857
- "/data/internal/anon_tokyo/togawa_group.wav",
858
- "/data/internal/anon_tokyo/togawa_group.wav",
859
- "/data/internal/anon_tokyo/togawa_group.wav",
860
- "/data/internal/anon_tokyo/togawa_group.wav",
861
- "/data/internal/anon_tokyo/togawa_group.wav",
862
- "/data/internal/anon_tokyo/togawa_group.wav",
863
- "/data/internal/anon_tokyo/togawa_group.wav",
864
- "/data/internal/anon_tokyo/togawa_group.wav",
865
- "/data/internal/anon_tokyo/togawa_group.wav",
866
- "/data/internal/anon_tokyo/togawa_group.wav",
867
- "/data/internal/anon_tokyo/togawa_group.wav",
868
- "/data/internal/anon_tokyo/togawa_group.wav",
869
- "/data/internal/anon_tokyo/togawa_group.wav",
870
- "/data/internal/anon_tokyo/togawa_group.wav",
871
- "/data/internal/anon_tokyo/togawa_group.wav",
872
- "/data/internal/anon_tokyo/togawa_group.wav",
873
- "/data/internal/anon_tokyo/togawa_group.wav",
874
- "/data/internal/anon_tokyo/togawa_group.wav",
875
- "/data/internal/anon_tokyo/togawa_group.wav",
876
- "/data/internal/anon_tokyo/togawa_group.wav",
877
- "/data/internal/anon_tokyo/togawa_group.wav",
878
- "/data/internal/anon_tokyo/togawa_group.wav",
879
- "/data/internal/anon_tokyo/togawa_group.wav",
880
- "/data/internal/anon_tokyo/togawa_group.wav",
881
- "/data/internal/anon_tokyo/togawa_group.wav",
882
- "/data/internal/anon_tokyo/togawa_group.wav",
883
- "/data/internal/anon_tokyo/togawa_group.wav",
884
- "/data/internal/anon_tokyo/togawa_group.wav",
885
- "/data/internal/anon_tokyo/togawa_group.wav",
886
- "/data/internal/anon_tokyo/togawa_group.wav",
887
- "/data/internal/anon_tokyo/togawa_group.wav",
888
- "/data/internal/anon_tokyo/togawa_group.wav",
889
- "/data/internal/anon_tokyo/togawa_group.wav",
890
- "/data/internal/anon_tokyo/togawa_group.wav",
891
- "/data/internal/anon_tokyo/togawa_group.wav",
892
- "/data/internal/anon_tokyo/togawa_group.wav",
893
- "/data/internal/anon_tokyo/togawa_group.wav",
894
- "/data/internal/anon_tokyo/togawa_group.wav",
895
- "/data/internal/anon_tokyo/togawa_group.wav",
896
- "/data/internal/anon_tokyo/togawa_group.wav",
897
- "/data/internal/anon_tokyo/togawa_group.wav",
898
- "/data/internal/anon_tokyo/togawa_group.wav",
899
- "/data/internal/anon_tokyo/togawa_group.wav",
900
- "/data/internal/anon_tokyo/togawa_group.wav",
901
- "/data/internal/anon_tokyo/togawa_group.wav",
902
- "/data/internal/anon_tokyo/togawa_group.wav",
903
- "/data/internal/anon_tokyo/togawa_group.wav",
904
- "/data/internal/anon_tokyo/togawa_group.wav",
905
- "/data/internal/anon_tokyo/togawa_group.wav",
906
- "/data/internal/anon_tokyo/togawa_group.wav",
907
- "/data/internal/anon_tokyo/togawa_group.wav",
908
- "/data/internal/anon_tokyo/togawa_group.wav",
909
- "/data/internal/anon_tokyo/togawa_group.wav",
910
- "/data/internal/anon_tokyo/togawa_group.wav",
911
- "/data/internal/anon_tokyo/togawa_group.wav",
912
- "/data/internal/anon_tokyo/togawa_group.wav",
913
- "/data/internal/anon_tokyo/togawa_group.wav",
914
- "/data/internal/anon_tokyo/togawa_group.wav",
915
- "/data/internal/anon_tokyo/togawa_group.wav",
916
- "/data/internal/anon_tokyo/togawa_group.wav",
917
- "/data/internal/anon_tokyo/togawa_group.wav",
918
- "/data/internal/anon_tokyo/togawa_group.wav",
919
- "/data/internal/anon_tokyo/togawa_group.wav",
920
- "/data/internal/anon_tokyo/togawa_group.wav",
921
- "/data/internal/anon_tokyo/togawa_group.wav",
922
- "/data/internal/anon_tokyo/togawa_group.wav",
923
- "/data/internal/anon_tokyo/togawa_group.wav",
924
- "/data/internal/anon_tokyo/togawa_group.wav",
925
- "/data/internal/anon_tokyo/togawa_group.wav",
926
- "/data/internal/anon_tokyo/togawa_group.wav",
927
- "/data/internal/anon_tokyo/togawa_group.wav",
928
- "/data/internal/anon_tokyo/togawa_group.wav",
929
- "/data/internal/anon_tokyo/togawa_group.wav",
930
- "/data/internal/anon_tokyo/togawa_group.wav",
931
- "/data/internal/anon_tokyo/togawa_group.wav",
932
- "/data/internal/anon_tokyo/togawa_group.wav",
933
- "/data/internal/anon_tokyo/togawa_group.wav",
934
- "/data/internal/anon_tokyo/togawa_group.wav",
935
- "/data/internal/anon_tokyo/togawa_group.wav",
936
- "/data/internal/anon_tokyo/togawa_group.wav",
937
- "/data/internal/anon_tokyo/togawa_group.wav",
938
- "/data/internal/anon_tokyo/togawa_group.wav",
939
- "/data/internal/anon_tokyo/togawa_group.wav",
940
- "/data/internal/anon_tokyo/togawa_group.wav",
941
- "/data/internal/anon_tokyo/togawa_group.wav",
942
- "/data/internal/anon_tokyo/togawa_group.wav",
943
- "/data/internal/anon_tokyo/togawa_group.wav",
944
- "/data/internal/anon_tokyo/togawa_group.wav",
945
- "/data/internal/anon_tokyo/togawa_group.wav",
946
- "/data/internal/anon_tokyo/togawa_group.wav",
947
- "/data/internal/anon_tokyo/togawa_group.wav",
948
- "/data/internal/anon_tokyo/togawa_group.wav",
949
- "/data/internal/anon_tokyo/togawa_group.wav",
950
- "/data/internal/anon_tokyo/togawa_group.wav",
951
- "/data/internal/anon_tokyo/togawa_group.wav",
952
- "/data/internal/anon_tokyo/togawa_group.wav",
953
- "/data/internal/anon_tokyo/togawa_group.wav",
954
- "/data/internal/anon_tokyo/togawa_group.wav",
955
- "/data/internal/anon_tokyo/togawa_group.wav",
956
- "/data/internal/anon_tokyo/togawa_group.wav",
957
- "/data/internal/anon_tokyo/togawa_group.wav",
958
- "/data/internal/anon_tokyo/togawa_group.wav",
959
- "/data/internal/anon_tokyo/togawa_group.wav",
960
- "/data/internal/anon_tokyo/togawa_group.wav",
961
- "/data/internal/anon_tokyo/togawa_group.wav",
962
- "/data/internal/anon_tokyo/togawa_group.wav",
963
- "/data/internal/anon_tokyo/togawa_group.wav",
964
- "/data/internal/anon_tokyo/togawa_group.wav",
965
- "/data/internal/anon_tokyo/togawa_group.wav",
966
- "/data/internal/anon_tokyo/togawa_group.wav",
967
- "/data/internal/anon_tokyo/togawa_group.wav",
968
- "/data/internal/anon_tokyo/togawa_group.wav",
969
- "/data/internal/anon_tokyo/togawa_group.wav",
970
- "/data/internal/anon_tokyo/togawa_group.wav",
971
- "/data/internal/anon_tokyo/togawa_group.wav",
972
- "/data/internal/anon_tokyo/togawa_group.wav",
973
- "/data/internal/anon_tokyo/togawa_group.wav",
974
- "/data/internal/anon_tokyo/togawa_group.wav",
975
- "/data/internal/anon_tokyo/togawa_group.wav",
976
- "/data/internal/anon_tokyo/togawa_group.wav",
977
- "/data/internal/anon_tokyo/togawa_group.wav",
978
- "/data/internal/anon_tokyo/togawa_group.wav",
979
- "/data/internal/anon_tokyo/togawa_group.wav",
980
- "/data/internal/anon_tokyo/togawa_group.wav",
981
- "/data/internal/anon_tokyo/togawa_group.wav",
982
- "/data/internal/anon_tokyo/togawa_group.wav",
983
- "/data/internal/anon_tokyo/togawa_group.wav",
984
- "/data/internal/anon_tokyo/togawa_group.wav",
985
- "/data/internal/anon_tokyo/togawa_group.wav",
986
- "/data/internal/anon_tokyo/togawa_group.wav",
987
- "/data/internal/anon_tokyo/togawa_group.wav",
988
- "/data/internal/anon_tokyo/togawa_group.wav",
989
- "/data/internal/anon_tokyo/togawa_group.wav",
990
- "/data/internal/anon_tokyo/togawa_group.wav",
991
- "/data/internal/anon_tokyo/togawa_group.wav",
992
- "/data/internal/anon_tokyo/togawa_group.wav",
993
- "/data/internal/anon_tokyo/togawa_group.wav",
994
- "/data/internal/anon_tokyo/togawa_group.wav",
995
- "/data/internal/anon_tokyo/togawa_group.wav",
996
- "/data/internal/anon_tokyo/togawa_group.wav",
997
- "/data/internal/anon_tokyo/togawa_group.wav",
998
- "/data/internal/anon_tokyo/togawa_group.wav",
999
- "/data/internal/anon_tokyo/togawa_group.wav",
1000
- "/data/internal/anon_tokyo/togawa_group.wav",
1001
- "/data/internal/anon_tokyo/togawa_group.wav",
1002
- "/data/internal/anon_tokyo/togawa_group.wav",
1003
- "/data/internal/anon_tokyo/togawa_group.wav",
1004
- "/data/internal/anon_tokyo/togawa_group.wav",
1005
- "/data/internal/anon_tokyo/togawa_group.wav",
1006
- "/data/internal/anon_tokyo/togawa_group.wav",
1007
- "/data/internal/anon_tokyo/togawa_group.wav",
1008
- "/data/internal/anon_tokyo/togawa_group.wav",
1009
- "/data/internal/anon_tokyo/togawa_group.wav",
1010
- "/data/internal/anon_tokyo/togawa_group.wav",
1011
- "/data/internal/anon_tokyo/togawa_group.wav",
1012
- "/data/internal/anon_tokyo/togawa_group.wav",
1013
- "/data/internal/anon_tokyo/togawa_group.wav",
1014
- "/data/internal/anon_tokyo/togawa_group.wav",
1015
- "/data/internal/anon_tokyo/togawa_group.wav",
1016
- "/data/internal/anon_tokyo/togawa_group.wav",
1017
- "/data/internal/anon_tokyo/togawa_group.wav",
1018
- "/data/internal/anon_tokyo/togawa_group.wav",
1019
- "/data/internal/anon_tokyo/togawa_group.wav",
1020
- "/data/internal/anon_tokyo/togawa_group.wav",
1021
- "/data/internal/anon_tokyo/togawa_group.wav",
1022
- "/data/internal/anon_tokyo/togawa_group.wav",
1023
- "/data/internal/anon_tokyo/togawa_group.wav",
1024
- "/data/internal/anon_tokyo/togawa_group.wav",
1025
- "/data/internal/anon_tokyo/togawa_group.wav",
1026
- "/data/internal/anon_tokyo/togawa_group.wav",
1027
- "/data/internal/anon_tokyo/togawa_group.wav",
1028
- "/data/internal/anon_tokyo/togawa_group.wav",
1029
- "/data/internal/anon_tokyo/togawa_group.wav",
1030
- "/data/internal/anon_tokyo/togawa_group.wav",
1031
- "/data/internal/anon_tokyo/togawa_group.wav",
1032
- "/data/internal/anon_tokyo/togawa_group.wav",
1033
- "/data/internal/anon_tokyo/togawa_group.wav",
1034
- "/data/internal/anon_tokyo/togawa_group.wav",
1035
- "/data/internal/anon_tokyo/togawa_group.wav",
1036
- "/data/internal/anon_tokyo/togawa_group.wav",
1037
- "/data/internal/anon_tokyo/togawa_group.wav",
1038
- "/data/internal/anon_tokyo/togawa_group.wav",
1039
- "/data/internal/anon_tokyo/togawa_group.wav",
1040
- "/data/internal/anon_tokyo/togawa_group.wav",
1041
- "/data/internal/anon_tokyo/togawa_group.wav",
1042
- "/data/internal/anon_tokyo/togawa_group.wav",
1043
- "/data/internal/anon_tokyo/togawa_group.wav",
1044
- "/data/internal/anon_tokyo/togawa_group.wav",
1045
- "/data/internal/anon_tokyo/togawa_group.wav",
1046
- "/data/internal/anon_tokyo/togawa_group.wav",
1047
- "/data/internal/anon_tokyo/togawa_group.wav",
1048
- "/data/internal/anon_tokyo/togawa_group.wav",
1049
- "/data/internal/anon_tokyo/togawa_group.wav",
1050
- "/data/internal/anon_tokyo/togawa_group.wav",
1051
- "/data/internal/anon_tokyo/togawa_group.wav",
1052
- "/data/internal/anon_tokyo/togawa_group.wav",
1053
- "/data/internal/anon_tokyo/togawa_group.wav",
1054
- "/data/internal/anon_tokyo/togawa_group.wav",
1055
- "/data/internal/anon_tokyo/togawa_group.wav",
1056
- "/data/internal/anon_tokyo/togawa_group.wav",
1057
- "/data/internal/anon_tokyo/togawa_group.wav",
1058
- "/data/internal/anon_tokyo/togawa_group.wav",
1059
- "/data/internal/anon_tokyo/togawa_group.wav",
1060
- "/data/internal/anon_tokyo/togawa_group.wav",
1061
- "/data/internal/anon_tokyo/togawa_group.wav",
1062
- "/data/internal/anon_tokyo/togawa_group.wav",
1063
- "/data/internal/anon_tokyo/togawa_group.wav",
1064
- "/data/internal/anon_tokyo/togawa_group.wav",
1065
- "/data/internal/anon_tokyo/togawa_group.wav",
1066
- "/data/internal/anon_tokyo/togawa_group.wav",
1067
- "/data/internal/anon_tokyo/togawa_group.wav",
1068
- "/data/internal/anon_tokyo/togawa_group.wav",
1069
- "/data/internal/anon_tokyo/togawa_group.wav",
1070
- "/data/internal/anon_tokyo/togawa_group.wav",
1071
- "/data/internal/anon_tokyo/togawa_group.wav",
1072
- "/data/internal/anon_tokyo/togawa_group.wav",
1073
- "/data/internal/anon_tokyo/togawa_group.wav",
1074
- "/data/internal/anon_tokyo/togawa_group.wav",
1075
- "/data/internal/anon_tokyo/togawa_group.wav",
1076
- "/data/internal/anon_tokyo/togawa_group.wav",
1077
- "/data/internal/anon_tokyo/togawa_group.wav",
1078
- "/data/internal/anon_tokyo/togawa_group.wav",
1079
- "/data/internal/anon_tokyo/togawa_group.wav",
1080
- "/data/internal/anon_tokyo/togawa_group.wav",
1081
- "/data/internal/anon_tokyo/togawa_group.wav",
1082
- "/data/internal/anon_tokyo/togawa_group.wav",
1083
- "/data/internal/anon_tokyo/togawa_group.wav",
1084
- "/data/internal/anon_tokyo/togawa_group.wav",
1085
- "/data/internal/anon_tokyo/togawa_group.wav",
1086
- "/data/internal/anon_tokyo/togawa_group.wav",
1087
- "/data/internal/anon_tokyo/togawa_group.wav",
1088
- "/data/internal/anon_tokyo/togawa_group.wav",
1089
- "/data/internal/anon_tokyo/togawa_group.wav",
1090
- "/data/internal/anon_tokyo/togawa_group.wav",
1091
- "/data/internal/anon_tokyo/togawa_group.wav",
1092
- "/data/internal/anon_tokyo/togawa_group.wav",
1093
- "/data/internal/anon_tokyo/togawa_group.wav",
1094
- "/data/internal/anon_tokyo/togawa_group.wav",
1095
- "/data/internal/anon_tokyo/togawa_group.wav",
1096
- "/data/internal/anon_tokyo/togawa_group.wav",
1097
- "/data/internal/anon_tokyo/togawa_group.wav",
1098
- "/data/internal/anon_tokyo/togawa_group.wav",
1099
- "/data/internal/anon_tokyo/togawa_group.wav",
1100
- "/data/internal/anon_tokyo/togawa_group.wav",
1101
- "/data/internal/anon_tokyo/togawa_group.wav",
1102
- "/data/internal/anon_tokyo/togawa_group.wav",
1103
- "/data/internal/anon_tokyo/togawa_group.wav",
1104
- "/data/internal/anon_tokyo/togawa_group.wav",
1105
- "/data/internal/anon_tokyo/togawa_group.wav",
1106
- "/data/internal/anon_tokyo/togawa_group.wav",
1107
- "/data/internal/anon_tokyo/togawa_group.wav",
1108
- "/data/internal/anon_tokyo/togawa_group.wav",
1109
- "/data/internal/anon_tokyo/togawa_group.wav",
1110
- "/data/internal/anon_tokyo/togawa_group.wav",
1111
- "/data/internal/anon_tokyo/togawa_group.wav",
1112
- "/data/internal/anon_tokyo/togawa_group.wav",
1113
- "/data/internal/anon_tokyo/togawa_group.wav",
1114
- "/data/internal/anon_tokyo/togawa_group.wav",
1115
- "/data/internal/anon_tokyo/togawa_group.wav",
1116
- "/data/internal/anon_tokyo/togawa_group.wav",
1117
- "/data/internal/anon_tokyo/togawa_group.wav",
1118
- "/data/internal/anon_tokyo/togawa_group.wav",
1119
- "/data/internal/anon_tokyo/togawa_group.wav",
1120
- "/data/internal/anon_tokyo/togawa_group.wav",
1121
- "/data/internal/anon_tokyo/togawa_group.wav",
1122
- "/data/internal/anon_tokyo/togawa_group.wav",
1123
- "/data/internal/anon_tokyo/togawa_group.wav",
1124
- "/data/internal/anon_tokyo/togawa_group.wav",
1125
- "/data/internal/anon_tokyo/togawa_group.wav",
1126
- "/data/internal/anon_tokyo/togawa_group.wav",
1127
- "/data/internal/anon_tokyo/togawa_group.wav",
1128
- "/data/internal/anon_tokyo/togawa_group.wav",
1129
- "/data/internal/anon_tokyo/togawa_group.wav",
1130
- "/data/internal/anon_tokyo/togawa_group.wav",
1131
- "/data/internal/anon_tokyo/togawa_group.wav",
1132
- "/data/internal/anon_tokyo/togawa_group.wav",
1133
- "/data/internal/anon_tokyo/togawa_group.wav",
1134
- "/data/internal/anon_tokyo/togawa_group.wav",
1135
- "/data/internal/anon_tokyo/togawa_group.wav",
1136
- "/data/internal/anon_tokyo/togawa_group.wav",
1137
- "/data/internal/anon_tokyo/togawa_group.wav",
1138
- "/data/internal/anon_tokyo/togawa_group.wav",
1139
- "/data/internal/anon_tokyo/togawa_group.wav",
1140
- "/data/internal/anon_tokyo/togawa_group.wav",
1141
- "/data/internal/anon_tokyo/togawa_group.wav",
1142
- "/data/internal/anon_tokyo/togawa_group.wav",
1143
- "/data/internal/anon_tokyo/togawa_group.wav",
1144
- "/data/internal/anon_tokyo/togawa_group.wav",
1145
- "/data/internal/anon_tokyo/togawa_group.wav",
1146
- "/data/internal/anon_tokyo/togawa_group.wav",
1147
- "/data/internal/anon_tokyo/togawa_group.wav",
1148
- "/data/internal/anon_tokyo/togawa_group.wav",
1149
- "/data/internal/anon_tokyo/togawa_group.wav",
1150
- "/data/internal/anon_tokyo/togawa_group.wav",
1151
- "/data/internal/anon_tokyo/togawa_group.wav",
1152
- "/data/internal/anon_tokyo/togawa_group.wav",
1153
- "/data/internal/anon_tokyo/togawa_group.wav",
1154
- "/data/internal/anon_tokyo/togawa_group.wav",
1155
- "/data/internal/anon_tokyo/togawa_group.wav",
1156
- "/data/internal/anon_tokyo/togawa_group.wav",
1157
- "/data/internal/anon_tokyo/togawa_group.wav",
1158
- "/data/internal/anon_tokyo/togawa_group.wav",
1159
- "/data/internal/anon_tokyo/togawa_group.wav",
1160
- "/data/internal/anon_tokyo/togawa_group.wav",
1161
- "/data/internal/anon_tokyo/togawa_group.wav",
1162
- "/data/internal/anon_tokyo/togawa_group.wav",
1163
- "/data/internal/anon_tokyo/togawa_group.wav",
1164
- "/data/internal/anon_tokyo/togawa_group.wav",
1165
- "/data/internal/anon_tokyo/togawa_group.wav",
1166
- "/data/internal/anon_tokyo/togawa_group.wav"
1167
- ],
1168
- "alignment_shifts": [
1169
- -4,
1170
- 68,
1171
- -44040,
1172
- 0,
1173
- 5730,
1174
- -287164,
1175
- 24,
1176
- 78,
1177
- 15432,
1178
- 402,
1179
- -2,
1180
- 0,
1181
- 63,
1182
- 9542,
1183
- -3,
1184
- -2,
1185
- 76,
1186
- 3072,
1187
- -59,
1188
- 0,
1189
- 64,
1190
- -3,
1191
- -17,
1192
- 37,
1193
- 79,
1194
- 121,
1195
- 124,
1196
- 28,
1197
- -14,
1198
- 2,
1199
- 9668,
1200
- 8820,
1201
- 30,
1202
- -104,
1203
- 67,
1204
- -18,
1205
- 15066,
1206
- -3,
1207
- 138,
1208
- -21,
1209
- -2,
1210
- 36,
1211
- 439,
1212
- -3,
1213
- 141,
1214
- 77,
1215
- -32,
1216
- 3608,
1217
- 321,
1218
- 1,
1219
- -4,
1220
- 0,
1221
- -28,
1222
- -133515,
1223
- -6,
1224
- -11,
1225
- -260006,
1226
- 60,
1227
- -33,
1228
- -44,
1229
- -45,
1230
- 7,
1231
- -7,
1232
- 219,
1233
- -316,
1234
- 0,
1235
- -35,
1236
- -98742,
1237
- -6,
1238
- -5,
1239
- 78,
1240
- 0,
1241
- -6,
1242
- 0,
1243
- 0,
1244
- 67,
1245
- -12,
1246
- 15495,
1247
- 69,
1248
- 15429,
1249
- -28645,
1250
- -108,
1251
- -4,
1252
- 95,
1253
- 2991,
1254
- 19,
1255
- -4,
1256
- -2,
1257
- 113,
1258
- -3,
1259
- 1,
1260
- 61,
1261
- 5292,
1262
- 34,
1263
- 71,
1264
- 67,
1265
- 530,
1266
- 165,
1267
- 2,
1268
- 46,
1269
- -3,
1270
- -6,
1271
- 69,
1272
- 75,
1273
- 66,
1274
- 0,
1275
- 0,
1276
- 2872,
1277
- 35,
1278
- 35,
1279
- -3,
1280
- 35,
1281
- 37,
1282
- 0,
1283
- -2,
1284
- 43,
1285
- -4,
1286
- -2,
1287
- 67,
1288
- -6,
1289
- 728,
1290
- 22091,
1291
- 0,
1292
- 1,
1293
- -7,
1294
- 15432,
1295
- 0,
1296
- 59,
1297
- 0,
1298
- -4,
1299
- 52,
1300
- 30,
1301
- -7,
1302
- 0,
1303
- -24,
1304
- -167543,
1305
- 67,
1306
- 73,
1307
- -2,
1308
- -220,
1309
- 60,
1310
- -70562,
1311
- 36,
1312
- 2,
1313
- 123,
1314
- 145,
1315
- -1450,
1316
- -16962,
1317
- 609,
1318
- 36,
1319
- 69,
1320
- -801,
1321
- -2,
1322
- 4,
1323
- 6,
1324
- -2,
1325
- 75,
1326
- 70,
1327
- -4,
1328
- -2,
1329
- 82,
1330
- 53,
1331
- 32,
1332
- 128,
1333
- -222,
1334
- -28226,
1335
- 3557,
1336
- 15432,
1337
- -6,
1338
- -52666,
1339
- 70,
1340
- -7,
1341
- 40,
1342
- 65,
1343
- -3,
1344
- 8,
1345
- 74,
1346
- 11,
1347
- 5,
1348
- -1093343,
1349
- -129130,
1350
- -30,
1351
- 34,
1352
- -36,
1353
- 15563,
1354
- 53,
1355
- -3,
1356
- 67,
1357
- 36,
1358
- 116,
1359
- 32,
1360
- 21,
1361
- -3,
1362
- 5,
1363
- 389,
1364
- 4410,
1365
- 82,
1366
- 15525,
1367
- -6,
1368
- 100,
1369
- 37,
1370
- 15512,
1371
- -2,
1372
- -6,
1373
- 34,
1374
- 34,
1375
- 99,
1376
- -80,
1377
- 4,
1378
- -2,
1379
- -2,
1380
- -22,
1381
- 269,
1382
- 4471,
1383
- 15543,
1384
- 3,
1385
- 1,
1386
- 593,
1387
- 35,
1388
- 37,
1389
- 87,
1390
- 120,
1391
- -7,
1392
- -8,
1393
- 8897,
1394
- -6,
1395
- -361965,
1396
- 394,
1397
- 430,
1398
- -154363,
1399
- -13172,
1400
- 40,
1401
- 135,
1402
- -2,
1403
- -9,
1404
- 69,
1405
- -2,
1406
- 3593,
1407
- 473,
1408
- -2181,
1409
- -11364,
1410
- -70,
1411
- -4,
1412
- -76,
1413
- -2,
1414
- -16,
1415
- 62,
1416
- -6,
1417
- -12239,
1418
- 34,
1419
- 8818,
1420
- -77,
1421
- -2,
1422
- 15,
1423
- -2,
1424
- -2,
1425
- 29,
1426
- 2883,
1427
- -2,
1428
- 6613,
1429
- -269138,
1430
- 6614,
1431
- -7067,
1432
- 340,
1433
- -160580,
1434
- 137,
1435
- 37,
1436
- -99,
1437
- 35,
1438
- -114544,
1439
- -113888,
1440
- -33,
1441
- -176504,
1442
- 15500,
1443
- 15437,
1444
- 49,
1445
- -42,
1446
- -176364,
1447
- 28,
1448
- -4,
1449
- 0,
1450
- 63,
1451
- -6,
1452
- -3,
1453
- -7,
1454
- 68,
1455
- 52,
1456
- 59,
1457
- 47,
1458
- 70,
1459
- 395,
1460
- -2,
1461
- 164,
1462
- 38,
1463
- -17,
1464
- 137,
1465
- 40,
1466
- 6,
1467
- 2,
1468
- 140,
1469
- 40,
1470
- -40,
1471
- 376,
1472
- -3,
1473
- 61,
1474
- 458,
1475
- -182879,
1476
- -110896,
1477
- 3,
1478
- 34,
1479
- -16,
1480
- 80,
1481
- 68,
1482
- -2,
1483
- 0,
1484
- 28,
1485
- 129,
1486
- 166,
1487
- 1449,
1488
- 1,
1489
- -161984,
1490
- 363,
1491
- 34,
1492
- 135,
1493
- 34,
1494
- -124,
1495
- 36,
1496
- 38,
1497
- 72,
1498
- -123590,
1499
- -45411,
1500
- 67,
1501
- -96332,
1502
- -96333,
1503
- 63,
1504
- -2,
1505
- 39,
1506
- -20,
1507
- 399,
1508
- 34,
1509
- 37,
1510
- -7,
1511
- 69,
1512
- -6,
1513
- 0,
1514
- 3,
1515
- 2933,
1516
- -153040,
1517
- -153041,
1518
- -3,
1519
- -2,
1520
- 66,
1521
- -72452,
1522
- -3,
1523
- -2,
1524
- -6,
1525
- -7,
1526
- 1,
1527
- -147889,
1528
- 37,
1529
- 0,
1530
- 0,
1531
- -2,
1532
- 40,
1533
- -3,
1534
- 44,
1535
- 76,
1536
- -14,
1537
- 49,
1538
- 81,
1539
- 34,
1540
- 70,
1541
- 63,
1542
- 68,
1543
- 0,
1544
- 61,
1545
- 0,
1546
- 0,
1547
- 62,
1548
- 48,
1549
- 58,
1550
- 63,
1551
- -23,
1552
- -23,
1553
- -2
1554
- ],
1555
- "params_original_shapes": [
1556
- [],
1557
- [],
1558
- [],
1559
- [],
1560
- [],
1561
- [],
1562
- [],
1563
- [],
1564
- [],
1565
- [],
1566
- [],
1567
- [],
1568
- [],
1569
- [],
1570
- [],
1571
- [],
1572
- [],
1573
- [
1574
- 1
1575
- ],
1576
- [],
1577
- [],
1578
- [],
1579
- [],
1580
- [],
1581
- [
1582
- 1
1583
- ],
1584
- [],
1585
- [],
1586
- [],
1587
- [],
1588
- [],
1589
- [],
1590
- [],
1591
- [
1592
- 6,
1593
- 2
1594
- ],
1595
- [
1596
- 2,
1597
- 6
1598
- ],
1599
- [
1600
- 49,
1601
- 1
1602
- ],
1603
- [
1604
- 6,
1605
- 6
1606
- ],
1607
- [],
1608
- [],
1609
- [],
1610
- [],
1611
- [],
1612
- [],
1613
- [],
1614
- [],
1615
- [],
1616
- [],
1617
- []
1618
- ],
1619
- "params_keys": [
1620
- "0.params.gain",
1621
- "0.params.parametrizations.freq.original",
1622
- "0.params.parametrizations.Q.original",
1623
- "1.params.gain",
1624
- "1.params.parametrizations.freq.original",
1625
- "1.params.parametrizations.Q.original",
1626
- "2.params.gain",
1627
- "2.params.parametrizations.freq.original",
1628
- "3.params.gain",
1629
- "3.params.parametrizations.freq.original",
1630
- "4.params.parametrizations.freq.original",
1631
- "4.params.parametrizations.Q.original",
1632
- "5.params.parametrizations.freq.original",
1633
- "5.params.parametrizations.Q.original",
1634
- "6.params.cmp_th",
1635
- "6.params.exp_th",
1636
- "6.params.make_up",
1637
- "6.params.parametrizations.lookahead.original",
1638
- "6.params.parametrizations.at.original",
1639
- "6.params.parametrizations.rt.original",
1640
- "6.params.parametrizations.avg_coef.original",
1641
- "6.params.parametrizations.cmp_ratio.original",
1642
- "6.params.parametrizations.exp_ratio.original",
1643
- "7.params.parametrizations.sends_0.original",
1644
- "7.effects.0.params.parametrizations.delay.original",
1645
- "7.effects.0.params.parametrizations.feedback.original",
1646
- "7.effects.0.params.parametrizations.gain.original",
1647
- "7.effects.0.eq.params.parametrizations.freq.original",
1648
- "7.effects.0.eq.params.parametrizations.Q.original",
1649
- "7.effects.0.odd_pan.params.parametrizations.pan.original",
1650
- "7.effects.0.even_pan.params.parametrizations.pan.original",
1651
- "7.effects.1.params.b",
1652
- "7.effects.1.params.c",
1653
- "7.effects.1.params.parametrizations.gamma.original",
1654
- "7.effects.1.params.parametrizations.U.original",
1655
- "7.effects.1.eq.0.params.gain",
1656
- "7.effects.1.eq.0.params.parametrizations.freq.original",
1657
- "7.effects.1.eq.0.params.parametrizations.Q.original",
1658
- "7.effects.1.eq.1.params.gain",
1659
- "7.effects.1.eq.1.params.parametrizations.freq.original",
1660
- "7.effects.1.eq.1.params.parametrizations.Q.original",
1661
- "7.effects.1.eq.2.params.gain",
1662
- "7.effects.1.eq.2.params.parametrizations.freq.original",
1663
- "7.effects.1.eq.3.params.gain",
1664
- "7.effects.1.eq.3.params.parametrizations.freq.original",
1665
- "7.pan.params.parametrizations.pan.original"
1666
- ],
1667
- "problematic_runs": {
1668
- "terminated": [],
1669
- "loss_above_4.0": [
1670
- [
1671
- "anon_tokyo/run_1",
1672
- 6.585290908813477
1673
- ],
1674
- [
1675
- "anon_tokyo/run_1",
1676
- 4.723783016204834
1677
- ]
1678
- ],
1679
- "not_converged": [],
1680
- "fluctuated_above_0.2": [
1681
- [
1682
- "anon_tokyo/run_1",
1683
- 0.49335169792175293
1684
- ],
1685
- [
1686
- "anon_tokyo/run_1",
1687
- 0.41164231300354004
1688
- ],
1689
- [
1690
- "anon_tokyo/run_1",
1691
- 0.5299015045166016
1692
- ]
1693
- ]
1694
- }
1695
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
presets/internal/raw_params.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b918d451809a7d6ad3949692bfe52cb502acbb102e6da87107885b1f2ea43174
3
- size 232668
 
 
 
 
presets/internal/train_index.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2755ef2544e63419a7273e415b283bf1e2c6602e46f875af450bf0114245e7e6
3
- size 3048
 
 
 
 
presets/medleydb/feature_mask.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:47a6ca4536dd9215ec45cc9d3aecc575e2b75d6a8375082b42d8b1a1ec055820
3
- size 279
 
 
 
 
presets/medleydb/gaussian.npz DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:41c5c29b8a94317a2247de47662031acac6c5884584646ff6caf5ba36c9a49e7
3
- size 68620
 
 
 
 
presets/medleydb/info.json DELETED
@@ -1,441 +0,0 @@
1
- {
2
- "runs": [
3
- "~/processed/AClassicEducation_NightOwl/AClassicEducation_NightOwl_STEM_08/run_0",
4
- "~/processed/AlexanderRoss_GoodbyeBolero/AlexanderRoss_GoodbyeBolero_STEM_06/run_0",
5
- "~/processed/AlexanderRoss_VelvetCurtain/AlexanderRoss_VelvetCurtain_STEM_06/run_0",
6
- "~/processed/Auctioneer_OurFutureFaces/Auctioneer_OurFutureFaces_STEM_08/run_0",
7
- "~/processed/AvaLuna_Waterduct/AvaLuna_Waterduct_STEM_08/run_0",
8
- "~/processed/BigTroubles_Phantom/BigTroubles_Phantom_STEM_04/run_0",
9
- "~/processed/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEM_02/run_0",
10
- "~/processed/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEM_01/run_0",
11
- "~/processed/BrandonWebster_YesSirICanFly/BrandonWebster_YesSirICanFly_STEM_02/run_0",
12
- "~/processed/CatMartino_IPromise/CatMartino_IPromise_STEM_06/run_0",
13
- "~/processed/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEM_07/run_0",
14
- "~/processed/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEM_08/run_0",
15
- "~/processed/ClaraBerryAndWooldog_Boys/ClaraBerryAndWooldog_Boys_STEM_06/run_0",
16
- "~/processed/ClaraBerryAndWooldog_Stella/ClaraBerryAndWooldog_Stella_STEM_07/run_0",
17
- "~/processed/ClaraBerryAndWooldog_WaltzForMyVictims/ClaraBerryAndWooldog_WaltzForMyVictims_STEM_05/run_0",
18
- "~/processed/DeadMilkmen_PrisonersCinema/DeadMilkmen_PrisonersCinema_STEM_12/run_0",
19
- "~/processed/Debussy_LenfantProdigue/Debussy_LenfantProdigue_STEM_01/run_0",
20
- "~/processed/DreamersOfTheGhetto_HeavyLove/DreamersOfTheGhetto_HeavyLove_STEM_08/run_0",
21
- "~/processed/FacesOnFilm_WaitingForGa/FacesOnFilm_WaitingForGa_STEM_03/run_0",
22
- "~/processed/FamilyBand_Again/FamilyBand_Again_STEM_09/run_0",
23
- "~/processed/Handel_TornamiAVagheggiar/Handel_TornamiAVagheggiar_STEM_01/run_0",
24
- "~/processed/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEM_08/run_0",
25
- "~/processed/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEM_03/run_0",
26
- "~/processed/HopAlong_SisterCities/HopAlong_SisterCities_STEM_07/run_0",
27
- "~/processed/LizNelson_Coldwar/LizNelson_Coldwar_STEM_02/run_0",
28
- "~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_02/run_0",
29
- "~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_03/run_0",
30
- "~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_04/run_0",
31
- "~/processed/LizNelson_ImComingHome/LizNelson_ImComingHome_STEM_01/run_0",
32
- "~/processed/LizNelson_Rainfall/LizNelson_Rainfall_STEM_01/run_0",
33
- "~/processed/LizNelson_Rainfall/LizNelson_Rainfall_STEM_03/run_0",
34
- "~/processed/LizNelson_Rainfall/LizNelson_Rainfall_STEM_02/run_0",
35
- "~/processed/MatthewEntwistle_DontYouEver/MatthewEntwistle_DontYouEver_STEM_07/run_0",
36
- "~/processed/MatthewEntwistle_Lontano/MatthewEntwistle_Lontano_STEM_02/run_0",
37
- "~/processed/Meaxic_TakeAStep/Meaxic_TakeAStep_STEM_08/run_0",
38
- "~/processed/Meaxic_TakeAStep/Meaxic_TakeAStep_STEM_04/run_0",
39
- "~/processed/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEM_01/run_0",
40
- "~/processed/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEM_02/run_0",
41
- "~/processed/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEM_06/run_0",
42
- "~/processed/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEM_07/run_0",
43
- "~/processed/Mozart_BesterJungling/Mozart_BesterJungling_STEM_01/run_0",
44
- "~/processed/Mozart_DiesBildnis/Mozart_DiesBildnis_STEM_01/run_0",
45
- "~/processed/MusicDelta_80sRock/MusicDelta_80sRock_STEM_04/run_0",
46
- "~/processed/MusicDelta_Beatles/MusicDelta_Beatles_STEM_08/run_0",
47
- "~/processed/MusicDelta_Beatles/MusicDelta_Beatles_STEM_07/run_0",
48
- "~/processed/MusicDelta_Britpop/MusicDelta_Britpop_STEM_07/run_0",
49
- "~/processed/MusicDelta_Britpop/MusicDelta_Britpop_STEM_08/run_0",
50
- "~/processed/MusicDelta_Country1/MusicDelta_Country1_STEM_05/run_1",
51
- "~/processed/MusicDelta_Country2/MusicDelta_Country2_STEM_05/run_0",
52
- "~/processed/MusicDelta_Disco/MusicDelta_Disco_STEM_04/run_0",
53
- "~/processed/MusicDelta_Gospel/MusicDelta_Gospel_STEM_06/run_0",
54
- "~/processed/MusicDelta_Grunge/MusicDelta_Grunge_STEM_05/run_0",
55
- "~/processed/MusicDelta_Hendrix/MusicDelta_Hendrix_STEM_04/run_0",
56
- "~/processed/MusicDelta_Punk/MusicDelta_Punk_STEM_04/run_0",
57
- "~/processed/MusicDelta_Reggae/MusicDelta_Reggae_STEM_04/run_0",
58
- "~/processed/MusicDelta_Rock/MusicDelta_Rock_STEM_05/run_0",
59
- "~/processed/MusicDelta_Rockabilly/MusicDelta_Rockabilly_STEM_05/run_0",
60
- "~/processed/MutualBenefit_NotForNothing/MutualBenefit_NotForNothing_STEM_06/run_0",
61
- "~/processed/PortStWillow_StayEven/PortStWillow_StayEven_STEM_08/run_0",
62
- "~/processed/Schubert_Erstarrung/Schubert_Erstarrung_STEM_01/run_0",
63
- "~/processed/Schumann_Mignon/Schumann_Mignon_STEM_02/run_0",
64
- "~/processed/Snowmine_Curfews/Snowmine_Curfews_STEM_03/run_0",
65
- "~/processed/SongYiJeon_TwoMoons/SongYiJeon_TwoMoons_STEM_01/run_0",
66
- "~/processed/StevenClark_Bounty/StevenClark_Bounty_STEM_08/run_0",
67
- "~/processed/StrandOfOaks_Spacestation/StrandOfOaks_Spacestation_STEM_04/run_0",
68
- "~/processed/TheKitchenettes_Alive/TheKitchenettes_Alive_STEM_01/run_0",
69
- "~/processed/TheScarletBrand_LesFleursDuMal/TheScarletBrand_LesFleursDuMal_STEM_08/run_0",
70
- "~/processed/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEM_04/run_0",
71
- "~/processed/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEM_05/run_0",
72
- "~/processed/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEM_04/run_0",
73
- "~/processed/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEM_05/run_0",
74
- "~/processed/Torres_NewSkin/Torres_NewSkin_STEM_02/run_0",
75
- "~/processed/Torres_NewSkin/Torres_NewSkin_STEM_05/run_0",
76
- "~/processed/Torres_NewSkin/Torres_NewSkin_STEM_10/run_0",
77
- "~/processed/Torres_NewSkin/Torres_NewSkin_STEM_03/run_0",
78
- "~/processed/Wolf_DieBekherte/Wolf_DieBekherte_STEM_01/run_0"
79
- ],
80
- "dry_files": [
81
- "/data/medley1/v1/Audio/AClassicEducation_NightOwl/AClassicEducation_NightOwl_RAW/AClassicEducation_NightOwl_RAW_08_01.wav",
82
- "/data/medley1/v1/Audio/Auctioneer_OurFutureFaces/Auctioneer_OurFutureFaces_RAW/Auctioneer_OurFutureFaces_RAW_08_01.wav",
83
- "/data/medley1/v1/Audio/AvaLuna_Waterduct/AvaLuna_Waterduct_RAW/AvaLuna_Waterduct_RAW_08_01.wav",
84
- "/data/medley1/v1/Audio/BigTroubles_Phantom/BigTroubles_Phantom_RAW/BigTroubles_Phantom_RAW_04_01.wav",
85
- "/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_RAW/BrandonWebster_DontHearAThing_RAW_02_01.wav",
86
- "/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_RAW/BrandonWebster_DontHearAThing_RAW_01_01.wav",
87
- "/data/medley1/v1/Audio/BrandonWebster_YesSirICanFly/BrandonWebster_YesSirICanFly_RAW/BrandonWebster_YesSirICanFly_RAW_02_01.wav",
88
- "/data/medley1/v2/Audio/CatMartino_IPromise/CatMartino_IPromise_RAW/CatMartino_IPromise_RAW_06_01.wav",
89
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_RAW/ClaraBerryAndWooldog_AirTraffic_RAW_07_01.wav",
90
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_RAW/ClaraBerryAndWooldog_AirTraffic_RAW_08_01.wav",
91
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_Boys/ClaraBerryAndWooldog_Boys_RAW/ClaraBerryAndWooldog_Boys_RAW_06_01.wav",
92
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_Stella/ClaraBerryAndWooldog_Stella_RAW/ClaraBerryAndWooldog_Stella_RAW_07_01.wav",
93
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_WaltzForMyVictims/ClaraBerryAndWooldog_WaltzForMyVictims_RAW/ClaraBerryAndWooldog_WaltzForMyVictims_RAW_05_01.wav",
94
- "/data/medley1/v2/Audio/DeadMilkmen_PrisonersCinema/DeadMilkmen_PrisonersCinema_RAW/DeadMilkmen_PrisonersCinema_RAW_12_01.wav",
95
- "/data/medley1/v1/Audio/DreamersOfTheGhetto_HeavyLove/DreamersOfTheGhetto_HeavyLove_RAW/DreamersOfTheGhetto_HeavyLove_RAW_08_01.wav",
96
- "/data/medley1/v1/Audio/FacesOnFilm_WaitingForGa/FacesOnFilm_WaitingForGa_RAW/FacesOnFilm_WaitingForGa_RAW_03_01.wav",
97
- "/data/medley1/v1/Audio/FamilyBand_Again/FamilyBand_Again_RAW/FamilyBand_Again_RAW_09_01.wav",
98
- "/data/medley1/v1/Audio/Handel_TornamiAVagheggiar/Handel_TornamiAVagheggiar_RAW/Handel_TornamiAVagheggiar_RAW_01_01.wav",
99
- "/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_RAW/HeladoNegro_MitadDelMundo_RAW_08_01.wav",
100
- "/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_RAW/HeladoNegro_MitadDelMundo_RAW_03_01.wav",
101
- "/data/medley1/v1/Audio/HopAlong_SisterCities/HopAlong_SisterCities_RAW/HopAlong_SisterCities_RAW_07_01.wav",
102
- "/data/medley1/v1/Audio/LizNelson_Coldwar/LizNelson_Coldwar_RAW/LizNelson_Coldwar_RAW_02_01.wav",
103
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_02_01.wav",
104
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_03_01.wav",
105
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_04_01.wav",
106
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_RAW/LizNelson_ImComingHome_RAW_01_01.wav",
107
- "/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_RAW/LizNelson_Rainfall_RAW_01_01.wav",
108
- "/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_RAW/LizNelson_Rainfall_RAW_03_01.wav",
109
- "/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_RAW/LizNelson_Rainfall_RAW_02_01.wav",
110
- "/data/medley1/v1/Audio/MatthewEntwistle_DontYouEver/MatthewEntwistle_DontYouEver_RAW/MatthewEntwistle_DontYouEver_RAW_07_01.wav",
111
- "/data/medley1/v1/Audio/MatthewEntwistle_Lontano/MatthewEntwistle_Lontano_RAW/MatthewEntwistle_Lontano_RAW_02_01.wav",
112
- "/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_RAW/Meaxic_TakeAStep_RAW_08_01.wav",
113
- "/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_RAW/Meaxic_TakeAStep_RAW_04_01.wav",
114
- "/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_RAW/MidnightBlue_HuntingSeason_RAW_01_01.wav",
115
- "/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_RAW/MidnightBlue_HuntingSeason_RAW_02_01.wav",
116
- "/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_RAW/MidnightBlue_StarsAreScreaming_RAW_06_01.wav",
117
- "/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_RAW/MidnightBlue_StarsAreScreaming_RAW_07_01.wav",
118
- "/data/medley1/v1/Audio/Mozart_BesterJungling/Mozart_BesterJungling_RAW/Mozart_BesterJungling_RAW_01_01.wav",
119
- "/data/medley1/v1/Audio/MusicDelta_80sRock/MusicDelta_80sRock_RAW/MusicDelta_80sRock_RAW_04_01.wav",
120
- "/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_RAW/MusicDelta_Beatles_RAW_08_01.wav",
121
- "/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_RAW/MusicDelta_Beatles_RAW_07_01.wav",
122
- "/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_RAW/MusicDelta_Britpop_RAW_07_01.wav",
123
- "/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_RAW/MusicDelta_Britpop_RAW_08_01.wav",
124
- "/data/medley1/v1/Audio/MusicDelta_Country1/MusicDelta_Country1_RAW/MusicDelta_Country1_RAW_05_01.wav",
125
- "/data/medley1/v1/Audio/MusicDelta_Country2/MusicDelta_Country2_RAW/MusicDelta_Country2_RAW_05_01.wav",
126
- "/data/medley1/v1/Audio/MusicDelta_Disco/MusicDelta_Disco_RAW/MusicDelta_Disco_RAW_04_01.wav",
127
- "/data/medley1/v1/Audio/MusicDelta_Gospel/MusicDelta_Gospel_RAW/MusicDelta_Gospel_RAW_06_01.wav",
128
- "/data/medley1/v1/Audio/MusicDelta_Grunge/MusicDelta_Grunge_RAW/MusicDelta_Grunge_RAW_05_01.wav",
129
- "/data/medley1/v1/Audio/MusicDelta_Hendrix/MusicDelta_Hendrix_RAW/MusicDelta_Hendrix_RAW_04_01.wav",
130
- "/data/medley1/v1/Audio/MusicDelta_Punk/MusicDelta_Punk_RAW/MusicDelta_Punk_RAW_04_01.wav",
131
- "/data/medley1/v1/Audio/MusicDelta_Reggae/MusicDelta_Reggae_RAW/MusicDelta_Reggae_RAW_04_01.wav",
132
- "/data/medley1/v1/Audio/MusicDelta_Rock/MusicDelta_Rock_RAW/MusicDelta_Rock_RAW_05_01.wav",
133
- "/data/medley1/v1/Audio/MusicDelta_Rockabilly/MusicDelta_Rockabilly_RAW/MusicDelta_Rockabilly_RAW_05_01.wav",
134
- "/data/medley1/v2/Audio/MutualBenefit_NotForNothing/MutualBenefit_NotForNothing_RAW/MutualBenefit_NotForNothing_RAW_06_01.wav",
135
- "/data/medley1/v1/Audio/PortStWillow_StayEven/PortStWillow_StayEven_RAW/PortStWillow_StayEven_RAW_08_01.wav",
136
- "/data/medley1/v1/Audio/Snowmine_Curfews/Snowmine_Curfews_RAW/Snowmine_Curfews_RAW_03_01.wav",
137
- "/data/medley1/v2/Audio/SongYiJeon_TwoMoons/SongYiJeon_TwoMoons_RAW/SongYiJeon_TwoMoons_RAW_01_01.wav",
138
- "/data/medley1/v1/Audio/StevenClark_Bounty/StevenClark_Bounty_RAW/StevenClark_Bounty_RAW_08_01.wav",
139
- "/data/medley1/v1/Audio/StrandOfOaks_Spacestation/StrandOfOaks_Spacestation_RAW/StrandOfOaks_Spacestation_RAW_04_01.wav",
140
- "/data/medley1/v2/Audio/TheKitchenettes_Alive/TheKitchenettes_Alive_RAW/TheKitchenettes_Alive_RAW_01_01.wav",
141
- "/data/medley1/v1/Audio/TheScarletBrand_LesFleursDuMal/TheScarletBrand_LesFleursDuMal_RAW/TheScarletBrand_LesFleursDuMal_RAW_08_01.wav",
142
- "/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_RAW/TleilaxEnsemble_Late_RAW_04_01.wav",
143
- "/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_RAW/TleilaxEnsemble_Late_RAW_05_01.wav",
144
- "/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_RAW/TleilaxEnsemble_MelancholyFlowers_RAW_04_01.wav",
145
- "/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_RAW/TleilaxEnsemble_MelancholyFlowers_RAW_05_01.wav",
146
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_02_01.wav",
147
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_05_01.wav",
148
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_10_01.wav",
149
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_RAW/Torres_NewSkin_RAW_03_01.wav",
150
- "/data/medley1/v1/Audio/Wolf_DieBekherte/Wolf_DieBekherte_RAW/Wolf_DieBekherte_RAW_01_01.wav"
151
- ],
152
- "wet_files": [
153
- "/data/medley1/v1/Audio/AClassicEducation_NightOwl/AClassicEducation_NightOwl_STEMS/AClassicEducation_NightOwl_STEM_08.wav",
154
- "/data/medley1/v1/Audio/Auctioneer_OurFutureFaces/Auctioneer_OurFutureFaces_STEMS/Auctioneer_OurFutureFaces_STEM_08.wav",
155
- "/data/medley1/v1/Audio/AvaLuna_Waterduct/AvaLuna_Waterduct_STEMS/AvaLuna_Waterduct_STEM_08.wav",
156
- "/data/medley1/v1/Audio/BigTroubles_Phantom/BigTroubles_Phantom_STEMS/BigTroubles_Phantom_STEM_04.wav",
157
- "/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEMS/BrandonWebster_DontHearAThing_STEM_02.wav",
158
- "/data/medley1/v1/Audio/BrandonWebster_DontHearAThing/BrandonWebster_DontHearAThing_STEMS/BrandonWebster_DontHearAThing_STEM_01.wav",
159
- "/data/medley1/v1/Audio/BrandonWebster_YesSirICanFly/BrandonWebster_YesSirICanFly_STEMS/BrandonWebster_YesSirICanFly_STEM_02.wav",
160
- "/data/medley1/v2/Audio/CatMartino_IPromise/CatMartino_IPromise_STEMS/CatMartino_IPromise_STEM_06.wav",
161
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEMS/ClaraBerryAndWooldog_AirTraffic_STEM_07.wav",
162
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_AirTraffic/ClaraBerryAndWooldog_AirTraffic_STEMS/ClaraBerryAndWooldog_AirTraffic_STEM_08.wav",
163
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_Boys/ClaraBerryAndWooldog_Boys_STEMS/ClaraBerryAndWooldog_Boys_STEM_06.wav",
164
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_Stella/ClaraBerryAndWooldog_Stella_STEMS/ClaraBerryAndWooldog_Stella_STEM_07.wav",
165
- "/data/medley1/v1/Audio/ClaraBerryAndWooldog_WaltzForMyVictims/ClaraBerryAndWooldog_WaltzForMyVictims_STEMS/ClaraBerryAndWooldog_WaltzForMyVictims_STEM_05.wav",
166
- "/data/medley1/v2/Audio/DeadMilkmen_PrisonersCinema/DeadMilkmen_PrisonersCinema_STEMS/DeadMilkmen_PrisonersCinema_STEM_12.wav",
167
- "/data/medley1/v1/Audio/DreamersOfTheGhetto_HeavyLove/DreamersOfTheGhetto_HeavyLove_STEMS/DreamersOfTheGhetto_HeavyLove_STEM_08.wav",
168
- "/data/medley1/v1/Audio/FacesOnFilm_WaitingForGa/FacesOnFilm_WaitingForGa_STEMS/FacesOnFilm_WaitingForGa_STEM_03.wav",
169
- "/data/medley1/v1/Audio/FamilyBand_Again/FamilyBand_Again_STEMS/FamilyBand_Again_STEM_09.wav",
170
- "/data/medley1/v1/Audio/Handel_TornamiAVagheggiar/Handel_TornamiAVagheggiar_STEMS/Handel_TornamiAVagheggiar_STEM_01.wav",
171
- "/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEMS/HeladoNegro_MitadDelMundo_STEM_08.wav",
172
- "/data/medley1/v1/Audio/HeladoNegro_MitadDelMundo/HeladoNegro_MitadDelMundo_STEMS/HeladoNegro_MitadDelMundo_STEM_03.wav",
173
- "/data/medley1/v1/Audio/HopAlong_SisterCities/HopAlong_SisterCities_STEMS/HopAlong_SisterCities_STEM_07.wav",
174
- "/data/medley1/v1/Audio/LizNelson_Coldwar/LizNelson_Coldwar_STEMS/LizNelson_Coldwar_STEM_02.wav",
175
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_02.wav",
176
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_03.wav",
177
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_04.wav",
178
- "/data/medley1/v1/Audio/LizNelson_ImComingHome/LizNelson_ImComingHome_STEMS/LizNelson_ImComingHome_STEM_01.wav",
179
- "/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_STEMS/LizNelson_Rainfall_STEM_01.wav",
180
- "/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_STEMS/LizNelson_Rainfall_STEM_03.wav",
181
- "/data/medley1/v1/Audio/LizNelson_Rainfall/LizNelson_Rainfall_STEMS/LizNelson_Rainfall_STEM_02.wav",
182
- "/data/medley1/v1/Audio/MatthewEntwistle_DontYouEver/MatthewEntwistle_DontYouEver_STEMS/MatthewEntwistle_DontYouEver_STEM_07.wav",
183
- "/data/medley1/v1/Audio/MatthewEntwistle_Lontano/MatthewEntwistle_Lontano_STEMS/MatthewEntwistle_Lontano_STEM_02.wav",
184
- "/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_STEMS/Meaxic_TakeAStep_STEM_08.wav",
185
- "/data/medley1/v1/Audio/Meaxic_TakeAStep/Meaxic_TakeAStep_STEMS/Meaxic_TakeAStep_STEM_04.wav",
186
- "/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEMS/MidnightBlue_HuntingSeason_STEM_01.wav",
187
- "/data/medley1/v2/Audio/MidnightBlue_HuntingSeason/MidnightBlue_HuntingSeason_STEMS/MidnightBlue_HuntingSeason_STEM_02.wav",
188
- "/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEMS/MidnightBlue_StarsAreScreaming_STEM_06.wav",
189
- "/data/medley1/v2/Audio/MidnightBlue_StarsAreScreaming/MidnightBlue_StarsAreScreaming_STEMS/MidnightBlue_StarsAreScreaming_STEM_07.wav",
190
- "/data/medley1/v1/Audio/Mozart_BesterJungling/Mozart_BesterJungling_STEMS/Mozart_BesterJungling_STEM_01.wav",
191
- "/data/medley1/v1/Audio/MusicDelta_80sRock/MusicDelta_80sRock_STEMS/MusicDelta_80sRock_STEM_04.wav",
192
- "/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_STEMS/MusicDelta_Beatles_STEM_08.wav",
193
- "/data/medley1/v1/Audio/MusicDelta_Beatles/MusicDelta_Beatles_STEMS/MusicDelta_Beatles_STEM_07.wav",
194
- "/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_STEMS/MusicDelta_Britpop_STEM_07.wav",
195
- "/data/medley1/v1/Audio/MusicDelta_Britpop/MusicDelta_Britpop_STEMS/MusicDelta_Britpop_STEM_08.wav",
196
- "/data/medley1/v1/Audio/MusicDelta_Country1/MusicDelta_Country1_STEMS/MusicDelta_Country1_STEM_05.wav",
197
- "/data/medley1/v1/Audio/MusicDelta_Country2/MusicDelta_Country2_STEMS/MusicDelta_Country2_STEM_05.wav",
198
- "/data/medley1/v1/Audio/MusicDelta_Disco/MusicDelta_Disco_STEMS/MusicDelta_Disco_STEM_04.wav",
199
- "/data/medley1/v1/Audio/MusicDelta_Gospel/MusicDelta_Gospel_STEMS/MusicDelta_Gospel_STEM_06.wav",
200
- "/data/medley1/v1/Audio/MusicDelta_Grunge/MusicDelta_Grunge_STEMS/MusicDelta_Grunge_STEM_05.wav",
201
- "/data/medley1/v1/Audio/MusicDelta_Hendrix/MusicDelta_Hendrix_STEMS/MusicDelta_Hendrix_STEM_04.wav",
202
- "/data/medley1/v1/Audio/MusicDelta_Punk/MusicDelta_Punk_STEMS/MusicDelta_Punk_STEM_04.wav",
203
- "/data/medley1/v1/Audio/MusicDelta_Reggae/MusicDelta_Reggae_STEMS/MusicDelta_Reggae_STEM_04.wav",
204
- "/data/medley1/v1/Audio/MusicDelta_Rock/MusicDelta_Rock_STEMS/MusicDelta_Rock_STEM_05.wav",
205
- "/data/medley1/v1/Audio/MusicDelta_Rockabilly/MusicDelta_Rockabilly_STEMS/MusicDelta_Rockabilly_STEM_05.wav",
206
- "/data/medley1/v2/Audio/MutualBenefit_NotForNothing/MutualBenefit_NotForNothing_STEMS/MutualBenefit_NotForNothing_STEM_06.wav",
207
- "/data/medley1/v1/Audio/PortStWillow_StayEven/PortStWillow_StayEven_STEMS/PortStWillow_StayEven_STEM_08.wav",
208
- "/data/medley1/v1/Audio/Snowmine_Curfews/Snowmine_Curfews_STEMS/Snowmine_Curfews_STEM_03.wav",
209
- "/data/medley1/v2/Audio/SongYiJeon_TwoMoons/SongYiJeon_TwoMoons_STEMS/SongYiJeon_TwoMoons_STEM_01.wav",
210
- "/data/medley1/v1/Audio/StevenClark_Bounty/StevenClark_Bounty_STEMS/StevenClark_Bounty_STEM_08.wav",
211
- "/data/medley1/v1/Audio/StrandOfOaks_Spacestation/StrandOfOaks_Spacestation_STEMS/StrandOfOaks_Spacestation_STEM_04.wav",
212
- "/data/medley1/v2/Audio/TheKitchenettes_Alive/TheKitchenettes_Alive_STEMS/TheKitchenettes_Alive_STEM_01.wav",
213
- "/data/medley1/v1/Audio/TheScarletBrand_LesFleursDuMal/TheScarletBrand_LesFleursDuMal_STEMS/TheScarletBrand_LesFleursDuMal_STEM_08.wav",
214
- "/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEMS/TleilaxEnsemble_Late_STEM_04.wav",
215
- "/data/medley1/v2/Audio/TleilaxEnsemble_Late/TleilaxEnsemble_Late_STEMS/TleilaxEnsemble_Late_STEM_05.wav",
216
- "/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEMS/TleilaxEnsemble_MelancholyFlowers_STEM_04.wav",
217
- "/data/medley1/v2/Audio/TleilaxEnsemble_MelancholyFlowers/TleilaxEnsemble_MelancholyFlowers_STEMS/TleilaxEnsemble_MelancholyFlowers_STEM_05.wav",
218
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_02.wav",
219
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_05.wav",
220
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_10.wav",
221
- "/data/medley1/v2/Audio/Torres_NewSkin/Torres_NewSkin_STEMS/Torres_NewSkin_STEM_03.wav",
222
- "/data/medley1/v1/Audio/Wolf_DieBekherte/Wolf_DieBekherte_STEMS/Wolf_DieBekherte_STEM_01.wav"
223
- ],
224
- "alignment_shifts": [
225
- 20,
226
- -675,
227
- -2130,
228
- -1644,
229
- 3,
230
- 3,
231
- -98,
232
- -3,
233
- 0,
234
- 0,
235
- 63,
236
- 63,
237
- 0,
238
- -2,
239
- 4,
240
- -657,
241
- -25414,
242
- -2,
243
- -1967,
244
- -1996,
245
- -761,
246
- 6475,
247
- 5091,
248
- 1238,
249
- 5689,
250
- 7158,
251
- 2265,
252
- 1260,
253
- 1144,
254
- 0,
255
- -5,
256
- 0,
257
- 841,
258
- 0,
259
- 0,
260
- -2,
261
- 0,
262
- -2,
263
- -490,
264
- -47,
265
- -3,
266
- -185,
267
- -20,
268
- -46,
269
- -43,
270
- -47,
271
- -175,
272
- -46,
273
- 366,
274
- -46,
275
- -48,
276
- -50,
277
- -47,
278
- -5,
279
- 289,
280
- 4298,
281
- 0,
282
- -235,
283
- -351,
284
- 0,
285
- 1,
286
- 0,
287
- 0,
288
- 0,
289
- 0,
290
- -2,
291
- -5,
292
- -4,
293
- -2,
294
- 2
295
- ],
296
- "params_original_shapes": [
297
- [],
298
- [],
299
- [],
300
- [],
301
- [],
302
- [],
303
- [],
304
- [],
305
- [],
306
- [],
307
- [],
308
- [],
309
- [],
310
- [],
311
- [],
312
- [],
313
- [],
314
- [
315
- 1
316
- ],
317
- [],
318
- [],
319
- [],
320
- [],
321
- [],
322
- [
323
- 1
324
- ],
325
- [],
326
- [],
327
- [],
328
- [],
329
- [],
330
- [],
331
- [],
332
- [
333
- 6,
334
- 2
335
- ],
336
- [
337
- 2,
338
- 6
339
- ],
340
- [
341
- 49,
342
- 1
343
- ],
344
- [
345
- 6,
346
- 6
347
- ],
348
- [],
349
- [],
350
- [],
351
- [],
352
- [],
353
- [],
354
- [],
355
- [],
356
- [],
357
- [],
358
- []
359
- ],
360
- "params_keys": [
361
- "0.params.gain",
362
- "0.params.parametrizations.freq.original",
363
- "0.params.parametrizations.Q.original",
364
- "1.params.gain",
365
- "1.params.parametrizations.freq.original",
366
- "1.params.parametrizations.Q.original",
367
- "2.params.gain",
368
- "2.params.parametrizations.freq.original",
369
- "3.params.gain",
370
- "3.params.parametrizations.freq.original",
371
- "4.params.parametrizations.freq.original",
372
- "4.params.parametrizations.Q.original",
373
- "5.params.parametrizations.freq.original",
374
- "5.params.parametrizations.Q.original",
375
- "6.params.cmp_th",
376
- "6.params.exp_th",
377
- "6.params.make_up",
378
- "6.params.parametrizations.lookahead.original",
379
- "6.params.parametrizations.at.original",
380
- "6.params.parametrizations.rt.original",
381
- "6.params.parametrizations.avg_coef.original",
382
- "6.params.parametrizations.cmp_ratio.original",
383
- "6.params.parametrizations.exp_ratio.original",
384
- "7.params.parametrizations.sends_0.original",
385
- "7.effects.0.params.parametrizations.delay.original",
386
- "7.effects.0.params.parametrizations.feedback.original",
387
- "7.effects.0.params.parametrizations.gain.original",
388
- "7.effects.0.eq.params.parametrizations.freq.original",
389
- "7.effects.0.eq.params.parametrizations.Q.original",
390
- "7.effects.0.odd_pan.params.parametrizations.pan.original",
391
- "7.effects.0.even_pan.params.parametrizations.pan.original",
392
- "7.effects.1.params.b",
393
- "7.effects.1.params.c",
394
- "7.effects.1.params.parametrizations.gamma.original",
395
- "7.effects.1.params.parametrizations.U.original",
396
- "7.effects.1.eq.0.params.gain",
397
- "7.effects.1.eq.0.params.parametrizations.freq.original",
398
- "7.effects.1.eq.0.params.parametrizations.Q.original",
399
- "7.effects.1.eq.1.params.gain",
400
- "7.effects.1.eq.1.params.parametrizations.freq.original",
401
- "7.effects.1.eq.1.params.parametrizations.Q.original",
402
- "7.effects.1.eq.2.params.gain",
403
- "7.effects.1.eq.2.params.parametrizations.freq.original",
404
- "7.effects.1.eq.3.params.gain",
405
- "7.effects.1.eq.3.params.parametrizations.freq.original",
406
- "7.pan.params.parametrizations.pan.original"
407
- ],
408
- "problematic_runs": {
409
- "terminated": [],
410
- "loss_above_4.0": [],
411
- "not_converged": [
412
- [
413
- "Debussy_LenfantProdigue/Debussy_LenfantProdigue_STEM_01/run_0",
414
- 1.0083130598068237,
415
- 1.673229455947876
416
- ]
417
- ],
418
- "fluctuated_above_0.2": [
419
- [
420
- "AlexanderRoss_GoodbyeBolero/AlexanderRoss_GoodbyeBolero_STEM_06/run_0",
421
- 0.5641272068023682
422
- ],
423
- [
424
- "AlexanderRoss_VelvetCurtain/AlexanderRoss_VelvetCurtain_STEM_06/run_0",
425
- 0.6348648071289062
426
- ],
427
- [
428
- "Mozart_DiesBildnis/Mozart_DiesBildnis_STEM_01/run_0",
429
- 0.2333838939666748
430
- ],
431
- [
432
- "Schubert_Erstarrung/Schubert_Erstarrung_STEM_01/run_0",
433
- 0.24937140941619873
434
- ],
435
- [
436
- "Schumann_Mignon/Schumann_Mignon_STEM_02/run_0",
437
- 0.6572010517120361
438
- ]
439
- ]
440
- }
441
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
presets/medleydb/raw_params.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f29549ce4b94ad6d42df25ad9854574e03cac6cef3a28b9820401de07f743218
3
- size 42408
 
 
 
 
presets/rt_config.yaml DELETED
@@ -1,190 +0,0 @@
1
- epochs: 2000
2
- data_dir: null
3
- log_dir: null
4
- lufs: -18
5
- sr: 44100
6
- chunk_duration: 12
7
- chunk_overlap: 5
8
- device: cuda
9
- batch_size: 35
10
- dataset: medley_vocal
11
- regularise_delay: true
12
- model:
13
- _target_: torch.nn.Sequential
14
- _args_:
15
- - _target_: modules.fx.Peak
16
- sr: 44100
17
- freq: 800
18
- min_freq: 33
19
- max_freq: 5400
20
- - _target_: modules.fx.Peak
21
- sr: 44100
22
- freq: 4000
23
- min_freq: 200
24
- max_freq: 17500
25
- - _target_: modules.fx.LowShelf
26
- sr: 44100
27
- freq: 115
28
- min_freq: 30
29
- max_freq: 200
30
- - _target_: modules.fx.HighShelf
31
- sr: 44100
32
- freq: 6000
33
- min_freq: 750
34
- max_freq: 8300
35
- - _target_: modules.fx.LowPass
36
- sr: 44100
37
- freq: 17500
38
- min_freq: 200
39
- max_freq: 18000
40
- - _target_: modules.fx.HighPass
41
- sr: 44100
42
- freq: 200
43
- min_freq: 16
44
- max_freq: 5300
45
- - _target_: modules.fx.CompressorExpander
46
- sr: 44100
47
- cmp_ratio: 2.0
48
- exp_ratio: 0.5
49
- at_ms: 50.0
50
- rt_ms: 50.0
51
- avg_coef: 0.3
52
- cmp_th: -18.0
53
- exp_th: -48.0
54
- make_up: 0.0
55
- lookahead: true
56
- max_lookahead: 15
57
- - _target_: modules.fx.SendFXsAndSum
58
- _args_:
59
- # - _target_: modules.fx.SurrogateDelay
60
- - _target_: modules.rt.RealTimeDelay
61
- sr: 44100
62
- delay: 400
63
- # dropout: 0
64
- # straight_through: true
65
- recursive_eq: true
66
- ir_duration: 4
67
- eq:
68
- _target_: modules.fx.LowPass
69
- sr: 44100
70
- freq: 8000
71
- min_freq: 200
72
- max_freq: 16000
73
- min_Q: 0.5
74
- max_Q: 2
75
- # - _target_: modules.fx.FDN
76
- - _target_: modules.rt.RealTimeFDN
77
- sr: 44100
78
- delays:
79
- - 997
80
- - 1153
81
- - 1327
82
- - 1559
83
- - 1801
84
- - 2099
85
- num_decay_freq: 49
86
- delay_independent_decay: true
87
- ir_duration: 12
88
- eq:
89
- _target_: torch.nn.Sequential
90
- _args_:
91
- - _target_: modules.fx.Peak
92
- sr: 44100
93
- freq: 800
94
- min_freq: 200
95
- max_freq: 2500
96
- min_Q: 0.1
97
- max_Q: 3
98
- - _target_: modules.fx.Peak
99
- sr: 44100
100
- freq: 4000
101
- min_freq: 600
102
- max_freq: 7000
103
- min_Q: 0.1
104
- max_Q: 3
105
- - _target_: modules.fx.LowShelf
106
- sr: 44100
107
- freq: 115
108
- min_freq: 30
109
- max_freq: 450
110
- - _target_: modules.fx.HighShelf
111
- sr: 44100
112
- freq: 8000
113
- min_freq: 1500
114
- max_freq: 16000
115
- cross_send: true
116
- pan_direct: true
117
- optimiser:
118
- _target_: torch.optim.Adam
119
- lr: 0.01
120
- mss:
121
- fft_sizes:
122
- - 128
123
- - 512
124
- - 2048
125
- hop_sizes:
126
- - 32
127
- - 128
128
- - 512
129
- mldr:
130
- s_taus:
131
- - 50
132
- - 100
133
- l_taus:
134
- - 1000
135
- - 2000
136
- loss_fn:
137
- _target_: loss.SumLosses
138
- weights:
139
- - 1.0
140
- - 0.5
141
- - 0.5
142
- - 0.25
143
- loss_fns:
144
- - _target_: auraloss.freq.MultiResolutionSTFTLoss
145
- fft_sizes:
146
- - 128
147
- - 512
148
- - 2048
149
- hop_sizes:
150
- - 32
151
- - 128
152
- - 512
153
- win_lengths:
154
- - 128
155
- - 512
156
- - 2048
157
- sample_rate: 44100
158
- perceptual_weighting: true
159
- - _target_: auraloss.freq.SumAndDifferenceSTFTLoss
160
- fft_sizes:
161
- - 128
162
- - 512
163
- - 2048
164
- hop_sizes:
165
- - 32
166
- - 128
167
- - 512
168
- win_lengths:
169
- - 128
170
- - 512
171
- - 2048
172
- sample_rate: 44100
173
- perceptual_weighting: true
174
- - _target_: loss.ldr.MLDRLoss
175
- sr: 44100
176
- s_taus:
177
- - 50
178
- - 100
179
- l_taus:
180
- - 1000
181
- - 2000
182
- - _target_: loss.ldr.MLDRLoss
183
- sr: 44100
184
- mid_side: true
185
- s_taus:
186
- - 50
187
- - 100
188
- l_taus:
189
- - 1000
190
- - 2000