Spaces:
Sleeping
Sleeping
File size: 6,746 Bytes
620c260 ba701dd 620c260 b6fa136 ba701dd 7cbe0e2 a89ed24 ba701dd 7cbe0e2 620c260 ba701dd 620c260 ba701dd 620c260 ba701dd 620c260 ba701dd 620c260 7cbe0e2 620c260 ba701dd 620c260 ba701dd 7cbe0e2 ba701dd 620c260 7cbe0e2 620c260 79a1038 7cbe0e2 ba701dd 620c260 e42d91f ba701dd 7cbe0e2 620c260 7cbe0e2 620c260 ba701dd 7cbe0e2 ba701dd 7cbe0e2 ba701dd 7cbe0e2 620c260 7cbe0e2 ba701dd 620c260 7cbe0e2 620c260 ba701dd 7cbe0e2 620c260 7cbe0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import torch
import torch.nn as nn
from torchvision import transforms
import pickle
from resnest.torch import resnest50
from rembg import remove
from PIL import Image
import io
import json
import time
import threading
import concurrent.futures
# 加载类别名称
with open('class_names.pkl', 'rb') as f:
class_names = pickle.load(f)
# 初始化模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = resnest50(pretrained=False)
model.fc = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(model.fc.in_features, len(class_names))
)
model.load_state_dict(torch.load('best_model.pth', map_location=device))
model = model.to(device)
model.eval()
# 预处理流程
preprocess = transforms.Compose([
transforms.Resize((100, 100)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 创建线程池
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
class RealtimeState:
def __init__(self):
self.last_result = None
self.last_update_time = 0
self.is_processing = False
self.lock = threading.Lock()
realtime_state = RealtimeState()
def remove_background(img):
"""使用rembg去除背景并添加白色背景"""
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_bytes = img_byte_arr.getvalue()
removed_bg_bytes = remove(img_bytes)
removed_bg_img = Image.open(io.BytesIO(removed_bg_bytes)).convert('RGBA')
white_bg = Image.new('RGBA', removed_bg_img.size, (255, 255, 255, 255))
combined = Image.alpha_composite(white_bg, removed_bg_img)
return combined.convert('RGB')
def predict_image(img, remove_bg=False):
"""分类预测主函数"""
if remove_bg:
processed_img = remove_background(img)
else:
processed_img = img.convert('RGB')
input_tensor = preprocess(processed_img)
input_batch = input_tensor.unsqueeze(0).to(device)
with torch.no_grad():
output = model(input_batch)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
top3_probs, top3_indices = torch.topk(probabilities, 3)
results = {
class_names[i]: round(p.item(), 4)
for p, i in zip(top3_probs, top3_indices)
}
best_class = class_names[top3_indices[0]]
best_conf = top3_probs[0].item() * 100
with open('prediction_results.txt', 'a') as f:
f.write(f"Remove BG: {remove_bg}\n")
f.write(f"Predicted: {best_class} ({best_conf:.2f}%)\n")
f.write(f"Top 3: {results}\n\n")
# 添加一个空字符串作为 prediction_id
prediction_id = ""
return prediction_id, processed_img, best_class, f"{best_conf:.2f}%", results
def predict_realtime(video_frame, remove_bg):
"""实时预测主函数,结果保留2秒"""
global realtime_state
if video_frame is None:
return None, None, None, None, None
current_time = time.time()
# 检查是否有未过期的结果
with realtime_state.lock:
if realtime_state.last_result and current_time - realtime_state.last_update_time < 2:
return realtime_state.last_result
# 如果正在处理中,返回None
if realtime_state.is_processing:
return None, None, None, None, None
# 标记为正在处理
realtime_state.is_processing = True
# 异步处理帧
def process_frame():
try:
result = predict_image(video_frame, remove_bg)
with realtime_state.lock:
realtime_state.last_result = result
realtime_state.last_update_time = time.time()
realtime_state.is_processing = False
except Exception as e:
print(f"处理帧时出错: {e}")
with realtime_state.lock:
realtime_state.is_processing = False
# 提交到线程池处理
executor.submit(process_frame)
return None, None, None, None, None
def add_feedback(prediction_id, feedback):
"""模拟将反馈信息保存,实际上不做任何操作"""
print(f"收到反馈: {feedback} 对预测ID: {prediction_id}")
return True
def create_interface():
examples = [
"r0_0_100.jpg",
"r0_18_100.jpg",
"9_100.jpg",
"5ecc819f1a579f513e0a1500fabb3f0.png",
"1105.jpg"
]
with gr.Blocks(title="Fruit Classification", theme=gr.themes.Soft()) as demo:
gr.Markdown("""# 🍎 智能水果识别系统""")
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
gr.Markdown("## ⚙️ 处理模式选择")
with gr.Row():
bg_removal = gr.Checkbox(label="背景去除", value=False, interactive=True)
with gr.Column():
original_image = gr.Image(label="📤 上传图片", type="pil")
gr.Examples(examples=examples, inputs=original_image)
submit_btn = gr.Button("🚀 开始识别", variant="primary")
gr.Markdown("""## ⚡ 实时识别""")
camera = gr.Image(label="📷 摄像头捕获", type="pil", streaming=True)
with gr.Column():
prediction_id_output = gr.Textbox(label="🔍 预测ID", interactive=False, visible=False)
processed_image = gr.Image(label="🖼️ 处理后图片", interactive=False)
best_pred = gr.Textbox(label="🔍 识别结果")
confidence = gr.Textbox(label="📊 置信度")
full_results = gr.Label(label="🏆 Top 3 可能结果", num_top_classes=3)
with gr.Row():
feedback_input = gr.Textbox(label="📝 输入反馈信息")
with gr.Row():
feedback_btn = gr.Button("📢 提交反馈", variant="secondary")
submit_btn.click(
fn=predict_image,
inputs=[original_image, bg_removal],
outputs=[prediction_id_output, processed_image, best_pred, confidence, full_results]
)
camera.stream(
fn=predict_realtime,
inputs=[camera, bg_removal],
outputs=[prediction_id_output, processed_image, best_pred, confidence, full_results]
)
feedback_btn.click(
fn=lambda prediction_id, feedback: (
add_feedback(prediction_id, feedback), "反馈成功!", gr.update(value="")),
inputs=[prediction_id_output, feedback_input],
outputs=[prediction_id_output, feedback_input]
)
return demo
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True)
|