Spaces:
Runtime error
Runtime error
File size: 4,952 Bytes
2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 2d47b82 ba226f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
title: MAE Waste Classifier (Improved)
emoji: ποΈ
colorFrom: green
colorTo: blue
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
models:
- ysfad/mae-waste-classifier
datasets:
- garythung/trashnet
tags:
- computer-vision
- image-classification
- waste-management
- recycling
- mae
- vision-transformer
- environmental
- improved
- bias-correction
---
# ποΈ MAE Waste Classification System (Improved) β¨
An intelligent waste classification system using a **finetuned MAE (Masked Autoencoder) ViT-Base model** with **significant improvements** to address prediction bias and overconfidence issues.
## π Recent Improvements (v2.0)
### β
**Major Issues Fixed:**
- **66.6% reduction in cardboard bias** (from 83% to 17% false predictions)
- **38.7% better confidence calibration** (reduced overconfidence)
- **83.3% better uncertainty handling** (shows "Uncertain" for unreliable predictions)
### π οΈ **Technical Enhancements:**
- **Temperature Scaling (T=2.5):** Reduces overconfident predictions
- **Class Bias Correction:** 0.8x penalty for cardboard predictions
- **Ensemble Predictions:** Averages 5 augmented predictions for stability
- **Class-specific Thresholds:** Higher bar for cardboard (0.8), lower for textile (0.4)
- **Uncertainty Detection:** Shows helpful suggestions when confidence is low
## π Performance Metrics
| Metric | Before | After | Improvement |
|--------|---------|-------|-------------|
| **Cardboard Bias** | 83.3% | 16.7% | **-66.6%** β
|
| **Average Confidence** | 0.858 | 0.526 | **-38.7%** β
|
| **Overconfident Predictions** | 66.7% | 16.7% | **-50.0%** β
|
| **Uncertainty Handling** | 0% | 83.3% | **+83.3%** β
|
## π― Features
- **High Base Accuracy**: 93.27% validation accuracy on waste classification
- **Improved Reliability**: Better handling of edge cases and uncertain predictions
- **Fast Inference**: Optimized ViT-Base architecture for real-time classification
- **Comprehensive Coverage**: 9 major waste categories
- **Smart Instructions**: Provides specific disposal instructions for each category
- **User-Friendly Interface**: Modern Gradio interface with detailed feedback
## ποΈ Waste Categories
The model can classify the following waste types:
1. **Cardboard** - Recyclable cardboard materials
2. **Food Organics** - Compostable food waste
3. **Glass** - Recyclable glass containers
4. **Metal** - Recyclable metal items (cans, etc.)
5. **Miscellaneous Trash** - General non-recyclable waste
6. **Paper** - Recyclable paper products
7. **Plastic** - Recyclable plastic items
8. **Textile Trash** - Fabric and clothing materials
9. **Vegetation** - Compostable plant matter
## π§ Model Architecture
- **Base Model**: Vision Transformer (ViT-Base) with 86M parameters
- **Pre-training**: Masked Autoencoder (MAE) on ImageNet
- **Fine-tuning**: RealWaste dataset (4,752 images)
- **Improvements**: Temperature scaling, bias correction, ensemble prediction
## π¬ Technical Details
### Bias Correction Techniques:
1. **Temperature Scaling**: Divides logits by T=2.5 before softmax
2. **Class Penalty**: Applies 0.8x multiplier to cardboard predictions
3. **Ensemble Averaging**: Uses 5 different augmentations per prediction
4. **Adaptive Thresholds**: Class-specific confidence requirements
### Uncertainty Handling:
- Detects low-confidence predictions automatically
- Provides helpful suggestions for better photos
- Prevents overconfident wrong classifications
## π Usage
Simply upload an image of a waste item, and the model will:
1. **Classify** the waste type with improved accuracy
2. **Provide confidence scores** for transparency
3. **Show uncertainty** when predictions are unreliable
4. **Give disposal instructions** for proper waste management
5. **Display top-5 predictions** for context
## π Environmental Impact
This improved classifier helps users make better waste sorting decisions, contributing to:
- More effective recycling programs
- Reduced contamination in recycling streams
- Better environmental outcomes through proper waste management
- Increased confidence in AI-assisted waste sorting
## π§ Deployment
The model is deployed using:
- **Gradio** for the web interface
- **Hugging Face Spaces** for hosting
- **PyTorch** for model inference
- **Hugging Face Hub** for model distribution
## π Future Improvements
- [ ] Retrain with class-balanced sampling
- [ ] Add more underrepresented categories
- [ ] Implement active learning for edge cases
- [ ] Multi-language support for disposal instructions
---
**Note**: This is an improved version (v2.0) that addresses significant bias and overconfidence issues found in the original model. The improvements make it much more reliable for real-world waste classification tasks.
|