Spaces:
Runtime error
Runtime error
File size: 14,030 Bytes
905ac99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
#!/usr/bin/env python3
"""
Improved MAE Waste Classifier with temperature scaling and bias correction
"""
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
from torchvision import transforms
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")
# Import MAE model
from mae.models_vit import vit_base_patch16
class ImprovedMAEWasteClassifier:
def __init__(self,
model_path=None,
hf_model_id=None,
device=None,
temperature=2.5, # Temperature scaling to reduce overconfidence
cardboard_penalty=0.8): # Penalty factor for cardboard predictions
"""
Initialize improved MAE waste classifier with bias correction
Args:
model_path: Local path to model file
hf_model_id: Hugging Face model ID
device: Device to run on
temperature: Temperature scaling factor (>1 reduces confidence)
cardboard_penalty: Penalty factor for cardboard predictions
"""
self.device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
self.temperature = temperature
self.cardboard_penalty = cardboard_penalty
# Class names (must match training order)
self.class_names = [
'Cardboard', 'Food Organics', 'Glass', 'Metal',
'Miscellaneous Trash', 'Paper', 'Plastic', 'Textile Trash', 'Vegetation'
]
# Class-specific confidence thresholds
self.class_thresholds = {
'Cardboard': 0.8, # Higher threshold for cardboard
'Plastic': 0.6,
'Metal': 0.6,
'Glass': 0.6,
'Paper': 0.6,
'Food Organics': 0.5,
'Miscellaneous Trash': 0.5,
'Textile Trash': 0.4, # Lower threshold for underrepresented class
'Vegetation': 0.5
}
# Load model
self.model = self._load_model(model_path, hf_model_id)
self.model.eval()
# Data preprocessing
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
print(f"β
Improved MAE Classifier loaded on {self.device}")
print(f"π‘οΈ Temperature scaling: {self.temperature}")
print(f"ποΈ Cardboard penalty: {self.cardboard_penalty}")
def _load_model(self, model_path=None, hf_model_id=None):
"""Load the finetuned MAE model"""
# Determine model path
if model_path and os.path.exists(model_path):
checkpoint_path = model_path
print(f"π Loading local model from {model_path}")
elif hf_model_id:
print(f"π Downloading model from HF Hub: {hf_model_id}")
checkpoint_path = hf_hub_download(
repo_id=hf_model_id,
filename="best_model.pth",
cache_dir="./hf_cache"
)
print(f"β
Downloaded model to: {checkpoint_path}")
else:
# Try local file
local_path = "output_simple_mae/best_model.pth"
if os.path.exists(local_path):
checkpoint_path = local_path
print(f"π Using local model: {local_path}")
else:
raise FileNotFoundError("No model found. Provide model_path or hf_model_id")
# Create model
model = vit_base_patch16(num_classes=len(self.class_names))
# Load checkpoint
checkpoint = torch.load(checkpoint_path, map_location=self.device)
# Handle different checkpoint formats
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
elif 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
# Load state dict
model.load_state_dict(state_dict, strict=False)
model = model.to(self.device)
print(f"β
Loaded finetuned MAE model from {checkpoint_path}")
return model
def _apply_temperature_scaling(self, logits):
"""Apply temperature scaling to reduce overconfidence"""
return logits / self.temperature
def _apply_class_bias_correction(self, probs):
"""Apply bias correction to reduce cardboard overconfidence"""
probs_corrected = probs.clone()
# Find cardboard class index
cardboard_idx = self.class_names.index('Cardboard')
# Apply penalty to cardboard predictions
probs_corrected[cardboard_idx] *= self.cardboard_penalty
# Renormalize probabilities
probs_corrected = probs_corrected / probs_corrected.sum()
return probs_corrected
def _ensemble_prediction(self, image, num_crops=5):
"""Use ensemble of augmented predictions for better stability"""
# Different augmentation transforms
augment_transforms = [
transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomResizedCrop(224, scale=(0.9, 1.0)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]),
transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(p=1.0),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]),
transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]),
transforms.Compose([
transforms.Resize((224, 224)),
transforms.ColorJitter(brightness=0.1, contrast=0.1),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]),
# Standard transform
self.transform
]
all_probs = []
with torch.no_grad():
for transform in augment_transforms[:num_crops]:
# Apply transform
input_tensor = transform(image).unsqueeze(0).to(self.device)
# Get prediction
logits = self.model(input_tensor)
# Apply temperature scaling
scaled_logits = self._apply_temperature_scaling(logits)
# Get probabilities
probs = F.softmax(scaled_logits, dim=1).squeeze(0)
# Apply bias correction
corrected_probs = self._apply_class_bias_correction(probs)
all_probs.append(corrected_probs.cpu().numpy())
# Average ensemble predictions
ensemble_probs = np.mean(all_probs, axis=0)
return ensemble_probs
def classify_image(self, image, top_k=5, use_ensemble=True):
"""
Classify a waste image with improved confidence calibration
Args:
image: PIL Image or path to image
top_k: Number of top predictions to return
use_ensemble: Whether to use ensemble prediction
Returns:
Dictionary with classification results
"""
try:
# Load image if path provided
if isinstance(image, str):
image = Image.open(image).convert('RGB')
elif not isinstance(image, Image.Image):
raise ValueError("Image must be PIL Image or file path")
# Get predictions
if use_ensemble:
probs = self._ensemble_prediction(image)
else:
# Single prediction with improvements
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
with torch.no_grad():
logits = self.model(input_tensor)
scaled_logits = self._apply_temperature_scaling(logits)
probs = F.softmax(scaled_logits, dim=1).squeeze(0)
probs = self._apply_class_bias_correction(probs)
probs = probs.cpu().numpy()
# Get top predictions
top_indices = np.argsort(probs)[::-1][:top_k]
top_predictions = []
for idx in top_indices:
class_name = self.class_names[idx]
confidence = float(probs[idx])
top_predictions.append({
'class': class_name,
'confidence': confidence
})
# Determine final prediction with class-specific thresholds
predicted_class = top_predictions[0]['class']
predicted_confidence = top_predictions[0]['confidence']
# Check if prediction meets class-specific threshold
threshold = self.class_thresholds.get(predicted_class, 0.5)
if predicted_confidence < threshold:
# If below threshold, mark as uncertain
predicted_class = "Uncertain"
predicted_confidence = predicted_confidence
return {
'success': True,
'predicted_class': predicted_class,
'confidence': predicted_confidence,
'top_predictions': top_predictions,
'ensemble_used': use_ensemble,
'temperature': self.temperature
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def get_disposal_instructions(self, class_name):
"""Get disposal instructions for a waste class"""
instructions = {
'Cardboard': 'Flatten and place in recycling bin. Remove any tape or staples.',
'Food Organics': 'Place in compost bin or organic waste collection.',
'Glass': 'Rinse and place in glass recycling bin. Remove caps and lids.',
'Metal': 'Rinse cans and place in metal recycling bin.',
'Miscellaneous Trash': 'Place in general waste bin.',
'Paper': 'Place in paper recycling bin. Remove any plastic components.',
'Plastic': 'Check recycling number and place in appropriate plastic recycling bin.',
'Textile Trash': 'Donate if in good condition, otherwise place in textile recycling.',
'Vegetation': 'Compost or place in yard waste collection.',
'Uncertain': 'Please take another photo from a different angle or with better lighting.'
}
return instructions.get(class_name, 'Please consult local waste management guidelines.')
def get_model_info(self):
"""Get model information"""
return {
'model_name': 'Improved ViT-Base MAE',
'architecture': 'Vision Transformer (ViT-Base)',
'pretrained': 'MAE (Masked Autoencoder)',
'num_classes': len(self.class_names),
'device': str(self.device),
'temperature': self.temperature,
'cardboard_penalty': self.cardboard_penalty,
'improvements': [
'Temperature scaling for confidence calibration',
'Class-specific bias correction',
'Ensemble predictions for stability',
'Class-specific confidence thresholds'
]
}
def test_improved_classifier():
"""Test the improved classifier"""
print("π§ͺ Testing Improved MAE Waste Classifier...")
# Load improved classifier
classifier = ImprovedMAEWasteClassifier(hf_model_id="ysfad/mae-waste-classifier")
# Test with a sample image
test_image = "fail_images/image.webp"
if os.path.exists(test_image):
print(f"\nπ Testing with {test_image}")
# Test both single and ensemble prediction
print("\n1. Single prediction:")
result1 = classifier.classify_image(test_image, use_ensemble=False)
if result1['success']:
print(f"π― Predicted: {result1['predicted_class']} ({result1['confidence']:.3f})")
print("\n2. Ensemble prediction:")
result2 = classifier.classify_image(test_image, use_ensemble=True)
if result2['success']:
print(f"π― Predicted: {result2['predicted_class']} ({result2['confidence']:.3f})")
print("π Top predictions:")
for i, pred in enumerate(result2['top_predictions'], 1):
print(f" {i}. {pred['class']}: {pred['confidence']:.3f}")
print("\nπ€ Model Info:")
info = classifier.get_model_info()
for key, value in info.items():
if isinstance(value, list):
print(f" {key}:")
for item in value:
print(f" - {item}")
else:
print(f" {key}: {value}")
if __name__ == "__main__":
test_improved_classifier() |