Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""Gradio app for waste classification using finetuned MAE ViT-Base model."""
|
3 |
+
|
4 |
+
import os
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
from mae_waste_classifier import MAEWasteClassifier
|
8 |
+
|
9 |
+
print("π Initializing MAE waste classifier...")
|
10 |
+
try:
|
11 |
+
# Load the finetuned MAE model from Hugging Face Hub
|
12 |
+
classifier = MAEWasteClassifier(hf_model_id="ysfad/mae-waste-classifier")
|
13 |
+
print("β
MAE Classifier ready!")
|
14 |
+
except Exception as e:
|
15 |
+
print(f"β Error loading MAE classifier: {e}")
|
16 |
+
raise
|
17 |
+
|
18 |
+
def classify_waste(image):
|
19 |
+
"""Classify waste item and provide disposal instructions."""
|
20 |
+
if image is None:
|
21 |
+
return "Please upload an image.", "", "", ""
|
22 |
+
|
23 |
+
try:
|
24 |
+
# Classify the image
|
25 |
+
result = classifier.classify_image(image, top_k=5)
|
26 |
+
|
27 |
+
if not result['success']:
|
28 |
+
return f"Error: {result['error']}", "", "", ""
|
29 |
+
|
30 |
+
# Get model info
|
31 |
+
model_info = classifier.get_model_info()
|
32 |
+
|
33 |
+
# Format main prediction
|
34 |
+
main_prediction = f"""
|
35 |
+
**π― Predicted Class:** {result['predicted_class']}
|
36 |
+
**π² Confidence:** {result['confidence']:.3f}
|
37 |
+
**π€ Model:** {model_info['model_name']}
|
38 |
+
**π Validation Accuracy:** 93.27%
|
39 |
+
"""
|
40 |
+
|
41 |
+
# Get disposal instructions
|
42 |
+
disposal_text = classifier.get_disposal_instructions(result['predicted_class'])
|
43 |
+
|
44 |
+
# Format detailed results table
|
45 |
+
if result['top_predictions']:
|
46 |
+
table_rows = []
|
47 |
+
for i, pred in enumerate(result['top_predictions'], 1):
|
48 |
+
table_rows.append([
|
49 |
+
str(i),
|
50 |
+
pred['class'],
|
51 |
+
f"{pred['confidence']:.3f}"
|
52 |
+
])
|
53 |
+
|
54 |
+
# Create HTML table
|
55 |
+
table_html = f"""
|
56 |
+
<div style="margin-top: 15px;">
|
57 |
+
<h4>π Top {len(result['top_predictions'])} Predictions</h4>
|
58 |
+
<table style="width: 100%; border-collapse: collapse;">
|
59 |
+
<thead>
|
60 |
+
<tr style="background-color: #f0f0f0;">
|
61 |
+
<th style="border: 1px solid #ddd; padding: 8px; text-align: left;">#</th>
|
62 |
+
<th style="border: 1px solid #ddd; padding: 8px; text-align: left;">Class</th>
|
63 |
+
<th style="border: 1px solid #ddd; padding: 8px; text-align: left;">Confidence</th>
|
64 |
+
</tr>
|
65 |
+
</thead>
|
66 |
+
<tbody>
|
67 |
+
"""
|
68 |
+
|
69 |
+
for row in table_rows:
|
70 |
+
# Color coding based on confidence
|
71 |
+
confidence_val = float(row[2])
|
72 |
+
if confidence_val > 0.7:
|
73 |
+
row_color = "#e8f5e8" # Light green
|
74 |
+
elif confidence_val > 0.4:
|
75 |
+
row_color = "#fff3cd" # Light yellow
|
76 |
+
else:
|
77 |
+
row_color = "#f8d7da" # Light red
|
78 |
+
|
79 |
+
table_html += f"""
|
80 |
+
<tr style="background-color: {row_color};">
|
81 |
+
<td style="border: 1px solid #ddd; padding: 8px;">{row[0]}</td>
|
82 |
+
<td style="border: 1px solid #ddd; padding: 8px;"><strong>{row[1]}</strong></td>
|
83 |
+
<td style="border: 1px solid #ddd; padding: 8px;">{row[2]}</td>
|
84 |
+
</tr>
|
85 |
+
"""
|
86 |
+
|
87 |
+
table_html += """
|
88 |
+
</tbody>
|
89 |
+
</table>
|
90 |
+
</div>
|
91 |
+
"""
|
92 |
+
else:
|
93 |
+
table_html = "<p>No predictions available.</p>"
|
94 |
+
|
95 |
+
# Format model info
|
96 |
+
model_info_text = f"""
|
97 |
+
**Architecture:** {model_info['architecture']}
|
98 |
+
**Pretrained:** {model_info['pretrained']}
|
99 |
+
**Classes:** {model_info['num_classes']} waste categories
|
100 |
+
**Device:** {model_info['device'].upper()}
|
101 |
+
**Training:** Finetuned on RealWaste dataset (4,752 images)
|
102 |
+
**Performance:** 93.27% validation accuracy
|
103 |
+
**Model Hub:** [ysfad/mae-waste-classifier](https://huggingface.co/ysfad/mae-waste-classifier)
|
104 |
+
"""
|
105 |
+
|
106 |
+
return main_prediction, disposal_text, table_html, model_info_text
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
return f"Error during classification: {str(e)}", "", "", ""
|
110 |
+
|
111 |
+
# Create Gradio interface
|
112 |
+
with gr.Blocks(title="ποΈ MAE Waste Classifier", theme=gr.themes.Soft()) as demo:
|
113 |
+
gr.Markdown("""
|
114 |
+
# ποΈ MAE Waste Classification System
|
115 |
+
|
116 |
+
Upload an image of waste item to get **classification** and **disposal instructions**.
|
117 |
+
|
118 |
+
Uses a **finetuned MAE ViT-Base model** achieving **93.27% validation accuracy** on 9 waste categories!
|
119 |
+
|
120 |
+
**Model:** [ysfad/mae-waste-classifier](https://huggingface.co/ysfad/mae-waste-classifier)
|
121 |
+
""")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
with gr.Column(scale=1):
|
125 |
+
# Input section
|
126 |
+
gr.Markdown("### πΈ Upload Image")
|
127 |
+
image_input = gr.Image(
|
128 |
+
type="pil",
|
129 |
+
label="Upload waste item image",
|
130 |
+
height=300
|
131 |
+
)
|
132 |
+
|
133 |
+
classify_btn = gr.Button(
|
134 |
+
"π Classify Waste",
|
135 |
+
variant="primary",
|
136 |
+
size="lg"
|
137 |
+
)
|
138 |
+
|
139 |
+
# Model info section
|
140 |
+
gr.Markdown("### π€ Model Information")
|
141 |
+
model_info_output = gr.Markdown("")
|
142 |
+
|
143 |
+
with gr.Column(scale=1):
|
144 |
+
# Results section
|
145 |
+
gr.Markdown("### π― Classification Results")
|
146 |
+
prediction_output = gr.Markdown("")
|
147 |
+
|
148 |
+
gr.Markdown("### β»οΈ Disposal Instructions")
|
149 |
+
disposal_output = gr.Textbox(
|
150 |
+
label="How to dispose of this item",
|
151 |
+
lines=4,
|
152 |
+
interactive=False
|
153 |
+
)
|
154 |
+
|
155 |
+
# Detailed results
|
156 |
+
gr.Markdown("### π Detailed Results")
|
157 |
+
detailed_output = gr.HTML("")
|
158 |
+
|
159 |
+
# Example images section (if available)
|
160 |
+
if os.path.exists("examples"):
|
161 |
+
gr.Markdown("### π‘ Try these examples:")
|
162 |
+
gr.Examples(
|
163 |
+
examples=[
|
164 |
+
["examples/plastic_bottle.jpg"],
|
165 |
+
["examples/cardboard_box.jpg"],
|
166 |
+
["examples/aluminum_can.jpg"],
|
167 |
+
["examples/glass_bottle.jpg"],
|
168 |
+
["examples/battery.jpg"]
|
169 |
+
],
|
170 |
+
inputs=image_input,
|
171 |
+
outputs=[prediction_output, disposal_output, detailed_output, model_info_output],
|
172 |
+
fn=classify_waste,
|
173 |
+
cache_examples=False
|
174 |
+
)
|
175 |
+
|
176 |
+
# Event handlers
|
177 |
+
classify_btn.click(
|
178 |
+
fn=classify_waste,
|
179 |
+
inputs=image_input,
|
180 |
+
outputs=[prediction_output, disposal_output, detailed_output, model_info_output]
|
181 |
+
)
|
182 |
+
|
183 |
+
image_input.change(
|
184 |
+
fn=classify_waste,
|
185 |
+
inputs=image_input,
|
186 |
+
outputs=[prediction_output, disposal_output, detailed_output, model_info_output]
|
187 |
+
)
|
188 |
+
|
189 |
+
# Footer
|
190 |
+
gr.Markdown("""
|
191 |
+
---
|
192 |
+
**π¬ About:** This system uses a **MAE (Masked Autoencoder) ViT-Base** model finetuned on the RealWaste dataset.
|
193 |
+
The model was pretrained with MAE self-supervised learning and then finetuned for waste classification.
|
194 |
+
|
195 |
+
**β‘ Performance:** Achieved **93.27% validation accuracy** on 9 waste categories with 4,752 training images.
|
196 |
+
|
197 |
+
**π Categories:** Cardboard, Food Organics, Glass, Metal, Miscellaneous Trash, Paper, Plastic, Textile Trash, Vegetation
|
198 |
+
|
199 |
+
**π€ Model:** [ysfad/mae-waste-classifier](https://huggingface.co/ysfad/mae-waste-classifier)
|
200 |
+
""")
|
201 |
+
|
202 |
+
if __name__ == "__main__":
|
203 |
+
demo.launch()
|