Spaces:
Configuration error
Configuration error
from diffusers import StableDiffusionPipeline | |
from lora_diffusion import monkeypatch_lora, tune_lora_scale | |
import torch | |
import os | |
import gradio as gr | |
import subprocess | |
MODEL_NAME="stabilityai/stable-diffusion-2-1-base" | |
INSTANCE_DIR="./data_example" | |
OUTPUT_DIR="./output_example" | |
model_id = "stabilityai/stable-diffusion-2-1-base" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") | |
#prompt = "style of sks, baby lion" | |
torch.manual_seed(1) | |
#image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need | |
#image # nice. diffusers are cool. #no need | |
#finetuned_lora_weights = "./lora_weight.pt" | |
#global var | |
counter = 0 | |
#Getting Lora fine-tuned weights | |
def monkeypatching(alpha, in_prompt): #, prompt, pipe): finetuned_lora_weights | |
print("****** inside monkeypatching *******") | |
print(f"in_prompt is - {str(in_prompt)}") | |
global counter | |
if counter == 0 : | |
monkeypatch_lora(pipe.unet, torch.load("./output_example/lora_weight.pt")) #finetuned_lora_weights | |
tune_lora_scale(pipe.unet, alpha) #1.00) | |
counter +=1 | |
else : | |
tune_lora_scale(pipe.unet, alpha) #1.00) | |
prompt = "style of hclu, " + str(in_prompt) #"baby lion" | |
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0] | |
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg") | |
return image | |
def accelerate_train_lora(steps): | |
print("*********** inside accelerate_train_lora ***********") | |
#subprocess.run(accelerate launch {"./train_lora_dreambooth.py"} \ | |
#subprocess.Popen(f'accelerate launch {"./train_lora_dreambooth.py"} \ | |
os.system( f'accelerate launch {"./train_lora_dreambooth.py"} \ | |
--pretrained_model_name_or_path={MODEL_NAME} \ | |
--instance_data_dir={INSTANCE_DIR} \ | |
--output_dir={OUTPUT_DIR} \ | |
--instance_prompt="style of hclu" \ | |
--resolution=512 \ | |
--train_batch_size=1 \ | |
--gradient_accumulation_steps=1 \ | |
--learning_rate=1e-4 \ | |
--lr_scheduler="constant" \ | |
--lr_warmup_steps=0 \ | |
--max_train_steps={int(steps)}') #,shell=True) #30000 | |
print("*********** completing accelerate_train_lora ***********") | |
return "./output_example/lora_weight.pt" | |
with gr.Blocks() as demo: | |
gr.Markdown("""<h1><center>LORA - Low-rank Adaptation for Fast Text-to-Image Diffusion Fine-tuning</center></h1> | |
""") | |
gr.Markdown( | |
"""**Main Features**<br>- Fine-tune Stable diffusion models twice as faster than dreambooth method, by Low-rank Adaptation.<br>- Get insanely small end result, easy to share and download.<br>- Easy to use, compatible with diffusers.<br>- Sometimes even better performance than full fine-tuning<br>Please refer the Github repo this Space is based on, here - <a href = "https://github.com/cloneofsimo/lora">LORA</a><br>You can also refer this tweet by AK over here to quote/retweet/like, here on <a href="https://twitter.com/_akhaliq/status/1601120767009513472">Twitter</a>.<br>This Gradio Space is an attempt to explore this novel LORA approach to fine-tune Stable diffusion models, using the power and flexibility of Gradio!<br><b>To use this Space well:</b>- First, upload your set of images (4-5), then enter the number of fine-tuning steps, and then press the 'Train LORA model' button.<br>- Enter a prompt, then set the alpha value using the Slider (nearer to 1 implies overfitting to the uploaded images), and then press the 'Inference' button.<br><b>Bonus:</b>Download your fine-tuned model weights from the Gradio file component. The smaller size of LORA models (around 3-4 mb files) is the main highlight of this 'Low-rank Adaptation' approach of fine-tuning.""") | |
with gr.Row(): | |
in_images = gr.File(label="Upload images to fine-tune for LORA", file_count="multiple") | |
#in_prompt = gr.Textbox(label="Enter a ") | |
in_steps = gr.Number(label="Enter number of steps") | |
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit") | |
with gr.Row(): | |
b1 = gr.Button(value="Train LORA model") | |
b2 = gr.Button(value="Inference using LORA model") | |
with gr.Row(): | |
in_prompt = gr.Textbox(label="Enter a prompt for fine-tuned LORA model", visible=True) | |
out_image = gr.Image(label="Image generated by LORA model") | |
out_file = gr.File(label="Lora trained model weights", ) | |
b1.click(fn = accelerate_train_lora, inputs=in_steps, outputs=out_file) | |
b2.click(fn = monkeypatching, inputs=[in_alpha, in_prompt], outputs=out_image) | |
demo.queue(concurrency_count=3) | |
demo.launch(debug=True, show_error=True) |