Spaces:
Configuration error
Configuration error
upd
Browse files
app.py
CHANGED
|
@@ -1,38 +1,27 @@
|
|
| 1 |
-
#https://github.com/huggingface/diffusers/tree/main/examples/dreambooth
|
| 2 |
-
#export
|
| 3 |
-
MODEL_NAME="stabilityai/stable-diffusion-2-1-base"
|
| 4 |
-
#export
|
| 5 |
-
INSTANCE_DIR="./data_example"
|
| 6 |
-
#export
|
| 7 |
-
OUTPUT_DIR="./output_example"
|
| 8 |
-
|
| 9 |
-
|
| 10 |
from diffusers import StableDiffusionPipeline
|
| 11 |
from lora_diffusion import monkeypatch_lora, tune_lora_scale
|
| 12 |
import torch
|
| 13 |
import os
|
| 14 |
import gradio as gr
|
| 15 |
-
#os.system('python file.py')
|
| 16 |
import subprocess
|
| 17 |
-
# If your shell script has shebang,
|
| 18 |
-
# you can omit shell=True argument.
|
| 19 |
-
#subprocess.run("./run_lora_db.sh", shell=True)
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
| 22 |
model_id = "stabilityai/stable-diffusion-2-1-base"
|
| 23 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
| 24 |
-
prompt = "style of sks, baby lion"
|
| 25 |
torch.manual_seed(1)
|
| 26 |
#image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need
|
| 27 |
#image # nice. diffusers are cool. #no need
|
| 28 |
-
finetuned_lora_weights = "./lora_weight.pt"
|
| 29 |
|
| 30 |
#global var
|
| 31 |
counter = 0
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def monkeypatching(alpha): #, prompt, pipe): finetuned_lora_weights
|
| 36 |
global counter
|
| 37 |
if counter == 0 :
|
| 38 |
monkeypatch_lora(pipe.unet, torch.load("./output_example/lora_weight.pt")) #finetuned_lora_weights
|
|
@@ -40,6 +29,7 @@ def monkeypatching(alpha): #, prompt, pipe): finetuned_lora_weights
|
|
| 40 |
counter +=1
|
| 41 |
else :
|
| 42 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
|
|
|
| 43 |
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
|
| 44 |
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
|
| 45 |
return image
|
|
@@ -73,9 +63,11 @@ with gr.Blocks() as demo:
|
|
| 73 |
b1 = gr.Button(value="Train LORA model")
|
| 74 |
b2 = gr.Button(value="Inference using LORA model")
|
| 75 |
with gr.Row():
|
|
|
|
| 76 |
out_image = gr.Image(label="Image generated by LORA model")
|
| 77 |
out_file = gr.File(label="Lora trained model weights")
|
| 78 |
b1.click(fn = accelerate_train_lora, inputs=in_steps, outputs=out_file)
|
| 79 |
-
b2.click(fn = monkeypatching, inputs=in_alpha, outputs=out_image)
|
| 80 |
|
| 81 |
-
demo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from diffusers import StableDiffusionPipeline
|
| 2 |
from lora_diffusion import monkeypatch_lora, tune_lora_scale
|
| 3 |
import torch
|
| 4 |
import os
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
import subprocess
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
MODEL_NAME="stabilityai/stable-diffusion-2-1-base"
|
| 9 |
+
INSTANCE_DIR="./data_example"
|
| 10 |
+
OUTPUT_DIR="./output_example"
|
| 11 |
+
|
| 12 |
model_id = "stabilityai/stable-diffusion-2-1-base"
|
| 13 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
| 14 |
+
#prompt = "style of sks, baby lion"
|
| 15 |
torch.manual_seed(1)
|
| 16 |
#image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need
|
| 17 |
#image # nice. diffusers are cool. #no need
|
| 18 |
+
#finetuned_lora_weights = "./lora_weight.pt"
|
| 19 |
|
| 20 |
#global var
|
| 21 |
counter = 0
|
| 22 |
|
| 23 |
+
#Getting Lora fine-tuned weights
|
| 24 |
+
def monkeypatching(alpha, in_prompt): #, prompt, pipe): finetuned_lora_weights
|
|
|
|
| 25 |
global counter
|
| 26 |
if counter == 0 :
|
| 27 |
monkeypatch_lora(pipe.unet, torch.load("./output_example/lora_weight.pt")) #finetuned_lora_weights
|
|
|
|
| 29 |
counter +=1
|
| 30 |
else :
|
| 31 |
tune_lora_scale(pipe.unet, alpha) #1.00)
|
| 32 |
+
prompt = "style of sks, " + in_prompt #"baby lion"
|
| 33 |
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
|
| 34 |
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
|
| 35 |
return image
|
|
|
|
| 63 |
b1 = gr.Button(value="Train LORA model")
|
| 64 |
b2 = gr.Button(value="Inference using LORA model")
|
| 65 |
with gr.Row():
|
| 66 |
+
in_prompt = gr.Textbox(label="Enter a prompt for fine-tuned LORA model")
|
| 67 |
out_image = gr.Image(label="Image generated by LORA model")
|
| 68 |
out_file = gr.File(label="Lora trained model weights")
|
| 69 |
b1.click(fn = accelerate_train_lora, inputs=in_steps, outputs=out_file)
|
| 70 |
+
b2.click(fn = monkeypatching, inputs=[in_alpha, in_prompt], outputs=out_image)
|
| 71 |
|
| 72 |
+
demo.queue(concurrency_count=3)
|
| 73 |
+
demo.launch(debug=True, show_error=True)
|