Spaces:
Runtime error
Runtime error
ema.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class LitEma(nn.Module):
|
| 6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
| 7 |
+
super().__init__()
|
| 8 |
+
if decay < 0.0 or decay > 1.0:
|
| 9 |
+
raise ValueError('Decay must be between 0 and 1')
|
| 10 |
+
|
| 11 |
+
self.m_name2s_name = {}
|
| 12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
| 13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
| 14 |
+
else torch.tensor(-1,dtype=torch.int))
|
| 15 |
+
|
| 16 |
+
for name, p in model.named_parameters():
|
| 17 |
+
if p.requires_grad:
|
| 18 |
+
#remove as '.'-character is not allowed in buffers
|
| 19 |
+
s_name = name.replace('.','')
|
| 20 |
+
self.m_name2s_name.update({name:s_name})
|
| 21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
| 22 |
+
|
| 23 |
+
self.collected_params = []
|
| 24 |
+
|
| 25 |
+
def forward(self,model):
|
| 26 |
+
decay = self.decay
|
| 27 |
+
|
| 28 |
+
if self.num_updates >= 0:
|
| 29 |
+
self.num_updates += 1
|
| 30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
| 31 |
+
|
| 32 |
+
one_minus_decay = 1.0 - decay
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
m_param = dict(model.named_parameters())
|
| 36 |
+
shadow_params = dict(self.named_buffers())
|
| 37 |
+
|
| 38 |
+
for key in m_param:
|
| 39 |
+
if m_param[key].requires_grad:
|
| 40 |
+
sname = self.m_name2s_name[key]
|
| 41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
| 42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
| 43 |
+
else:
|
| 44 |
+
assert not key in self.m_name2s_name
|
| 45 |
+
|
| 46 |
+
def copy_to(self, model):
|
| 47 |
+
m_param = dict(model.named_parameters())
|
| 48 |
+
shadow_params = dict(self.named_buffers())
|
| 49 |
+
for key in m_param:
|
| 50 |
+
if m_param[key].requires_grad:
|
| 51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
| 52 |
+
else:
|
| 53 |
+
assert not key in self.m_name2s_name
|
| 54 |
+
|
| 55 |
+
def store(self, parameters):
|
| 56 |
+
"""
|
| 57 |
+
Save the current parameters for restoring later.
|
| 58 |
+
Args:
|
| 59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 60 |
+
temporarily stored.
|
| 61 |
+
"""
|
| 62 |
+
self.collected_params = [param.clone() for param in parameters]
|
| 63 |
+
|
| 64 |
+
def restore(self, parameters):
|
| 65 |
+
"""
|
| 66 |
+
Restore the parameters stored with the `store` method.
|
| 67 |
+
Useful to validate the model with EMA parameters without affecting the
|
| 68 |
+
original optimization process. Store the parameters before the
|
| 69 |
+
`copy_to` method. After validation (or model saving), use this to
|
| 70 |
+
restore the former parameters.
|
| 71 |
+
Args:
|
| 72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 73 |
+
updated with the stored parameters.
|
| 74 |
+
"""
|
| 75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
| 76 |
+
param.data.copy_(c_param.data)
|