Spaces:
Running
on
Zero
Running
on
Zero
| # Adding this at the very top of app.py to make 'generative-models' directory discoverable | |
| import os | |
| import sys | |
| sys.path.append(os.path.join(os.path.dirname(__file__), "generative-models")) | |
| import math | |
| import random | |
| import uuid | |
| from glob import glob | |
| from pathlib import Path | |
| from typing import Optional | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from einops import rearrange, repeat | |
| from fire import Fire | |
| from huggingface_hub import hf_hub_download | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from torchvision.transforms import ToTensor | |
| from scripts.sampling.simple_video_sample import ( | |
| get_batch, get_unique_embedder_keys_from_conditioner, load_model) | |
| from scripts.util.detection.nsfw_and_watermark_dectection import \ | |
| DeepFloydDataFiltering | |
| from sgm.inference.helpers import embed_watermark | |
| from sgm.util import default, instantiate_from_config | |
| # To download all svd models | |
| # hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints") | |
| # hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid", filename="svd.safetensors", local_dir="checkpoints") | |
| # hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir="checkpoints") | |
| # Define the repo, local directory and filename | |
| repo_id = "stabilityai/stable-video-diffusion-img2vid-xt-1-1" # replace with "stabilityai/stable-video-diffusion-img2vid-xt" or "stabilityai/stable-video-diffusion-img2vid" for other models | |
| filename = "svd_xt_1_1.safetensors" # replace with "svd_xt.safetensors" or "svd.safetensors" for other models | |
| local_dir = "checkpoints" | |
| local_file_path = os.path.join(local_dir, filename) | |
| # Check if the file already exists | |
| if not os.path.exists(local_file_path): | |
| # If the file doesn't exist, download it | |
| hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir) | |
| print("File downloaded.") | |
| else: | |
| print("File already exists. No need to download.") | |
| version = "svd_xt_1_1" # replace with 'svd_xt' or 'svd' for other models | |
| device = "cuda" | |
| max_64_bit_int = 2**63 - 1 | |
| if version == "svd_xt_1_1": | |
| num_frames = 25 | |
| num_steps = 30 | |
| model_config = "scripts/sampling/configs/svd_xt_1_1.yaml" | |
| else: | |
| raise ValueError(f"Version {version} does not exist.") | |
| model, filter = load_model( | |
| model_config, | |
| device, | |
| num_frames, | |
| num_steps, | |
| ) | |
| def sample( | |
| input_path: str = "assets/test_image.png", # Can either be image file or folder with image files | |
| seed: Optional[int] = None, | |
| randomize_seed: bool = True, | |
| motion_bucket_id: int = 127, | |
| fps_id: int = 6, | |
| version: str = "svd_xt_1_1", | |
| cond_aug: float = 0.02, | |
| decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
| device: str = "cuda", | |
| output_folder: str = "outputs", | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each | |
| image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. | |
| """ | |
| fps_id = int(fps_id) # casting float slider values to int) | |
| if randomize_seed: | |
| seed = random.randint(0, max_64_bit_int) | |
| torch.manual_seed(seed) | |
| path = Path(input_path) | |
| all_img_paths = [] | |
| if path.is_file(): | |
| if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): | |
| all_img_paths = [input_path] | |
| else: | |
| raise ValueError("Path is not valid image file.") | |
| elif path.is_dir(): | |
| all_img_paths = sorted( | |
| [ | |
| f | |
| for f in path.iterdir() | |
| if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] | |
| ] | |
| ) | |
| if len(all_img_paths) == 0: | |
| raise ValueError("Folder does not contain any images.") | |
| else: | |
| raise ValueError | |
| for input_img_path in all_img_paths: | |
| with Image.open(input_img_path) as image: | |
| if image.mode == "RGBA": | |
| image = image.convert("RGB") | |
| w, h = image.size | |
| if h % 64 != 0 or w % 64 != 0: | |
| width, height = map(lambda x: x - x % 64, (w, h)) | |
| image = image.resize((width, height)) | |
| print( | |
| f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" | |
| ) | |
| image = ToTensor()(image) | |
| image = image * 2.0 - 1.0 | |
| image = image.unsqueeze(0).to(device) | |
| H, W = image.shape[2:] | |
| assert image.shape[1] == 3 | |
| F = 8 | |
| C = 4 | |
| shape = (num_frames, C, H // F, W // F) | |
| if (H, W) != (576, 1024): | |
| print( | |
| "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." | |
| ) | |
| if motion_bucket_id > 255: | |
| print( | |
| "WARNING: High motion bucket! This may lead to suboptimal performance." | |
| ) | |
| if fps_id < 5: | |
| print("WARNING: Small fps value! This may lead to suboptimal performance.") | |
| if fps_id > 30: | |
| print("WARNING: Large fps value! This may lead to suboptimal performance.") | |
| value_dict = {} | |
| value_dict["motion_bucket_id"] = motion_bucket_id | |
| value_dict["fps_id"] = fps_id | |
| value_dict["cond_aug"] = cond_aug | |
| value_dict["cond_frames_without_noise"] = image | |
| value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) | |
| value_dict["cond_aug"] = cond_aug | |
| with torch.no_grad(): | |
| with torch.autocast(device): | |
| batch, batch_uc = get_batch( | |
| get_unique_embedder_keys_from_conditioner(model.conditioner), | |
| value_dict, | |
| [1, num_frames], | |
| T=num_frames, | |
| device=device, | |
| ) | |
| c, uc = model.conditioner.get_unconditional_conditioning( | |
| batch, | |
| batch_uc=batch_uc, | |
| force_uc_zero_embeddings=[ | |
| "cond_frames", | |
| "cond_frames_without_noise", | |
| ], | |
| ) | |
| for k in ["crossattn", "concat"]: | |
| uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) | |
| uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) | |
| c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) | |
| c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) | |
| randn = torch.randn(shape, device=device) | |
| additional_model_inputs = {} | |
| additional_model_inputs["image_only_indicator"] = torch.zeros( | |
| 2, num_frames | |
| ).to(device) | |
| additional_model_inputs["num_video_frames"] = batch["num_video_frames"] | |
| def denoiser(input, sigma, c): | |
| return model.denoiser( | |
| model.model, input, sigma, c, **additional_model_inputs | |
| ) | |
| samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) | |
| model.en_and_decode_n_samples_a_time = decoding_t | |
| samples_x = model.decode_first_stage(samples_z) | |
| samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) | |
| os.makedirs(output_folder, exist_ok=True) | |
| base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
| video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
| writer = cv2.VideoWriter( | |
| video_path, | |
| cv2.VideoWriter_fourcc(*"mp4v"), | |
| fps_id + 1, | |
| (samples.shape[-1], samples.shape[-2]), | |
| ) | |
| samples = embed_watermark(samples) | |
| samples = filter(samples) | |
| vid = ( | |
| (rearrange(samples, "t c h w -> t h w c") * 255) | |
| .cpu() | |
| .numpy() | |
| .astype(np.uint8) | |
| ) | |
| for frame in vid: | |
| frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
| writer.write(frame) | |
| writer.release() | |
| return video_path, seed | |
| def resize_image(image_path, output_size=(1024, 576)): | |
| image = Image.open(image_path) | |
| # Calculate aspect ratios | |
| target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size | |
| image_aspect = image.width / image.height # Aspect ratio of the original image | |
| # Resize then crop if the original image is larger | |
| if image_aspect > target_aspect: | |
| # Resize the image to match the target height, maintaining aspect ratio | |
| new_height = output_size[1] | |
| new_width = int(new_height * image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = (new_width - output_size[0]) / 2 | |
| top = 0 | |
| right = (new_width + output_size[0]) / 2 | |
| bottom = output_size[1] | |
| else: | |
| # Resize the image to match the target width, maintaining aspect ratio | |
| new_width = output_size[0] | |
| new_height = int(new_width / image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = 0 | |
| top = (new_height - output_size[1]) / 2 | |
| right = output_size[0] | |
| bottom = (new_height + output_size[1]) / 2 | |
| # Crop the image | |
| cropped_image = resized_image.crop((left, top, right, bottom)) | |
| return cropped_image | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets)) | |
| #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact). | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Upload your image", type="filepath") | |
| generate_btn = gr.Button("Generate") | |
| video = gr.Video() | |
| with gr.Accordion("Advanced options", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| value=42, | |
| randomize=True, | |
| minimum=0, | |
| maximum=max_64_bit_int, | |
| step=1, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| motion_bucket_id = gr.Slider( | |
| label="Motion bucket id", | |
| info="Controls how much motion to add/remove from the image", | |
| value=127, | |
| minimum=1, | |
| maximum=255, | |
| ) | |
| fps_id = gr.Slider( | |
| label="Frames per second", | |
| info="The length of your video in seconds will be 25/fps", | |
| value=6, | |
| minimum=5, | |
| maximum=30, | |
| ) | |
| image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) | |
| generate_btn.click( | |
| fn=sample, | |
| inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], | |
| outputs=[video, seed], | |
| api_name="video", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20) | |
| demo.launch(share=True) | |