Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import torchvision | |
| import pickle | |
| from typing import Any | |
| import lmdb | |
| import cv2 | |
| import imageio | |
| import numpy as np | |
| from PIL import Image | |
| import Imath | |
| import OpenEXR | |
| from pdb import set_trace as st | |
| from pathlib import Path | |
| from functools import partial | |
| import io | |
| import gzip | |
| import random | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from torch.utils.data import DataLoader, Dataset | |
| from torchvision import transforms | |
| from torch.utils.data.distributed import DistributedSampler | |
| from pathlib import Path | |
| from guided_diffusion import logger | |
| def load_dataset( | |
| file_path="", | |
| reso=64, | |
| reso_encoder=224, | |
| batch_size=1, | |
| # shuffle=True, | |
| num_workers=6, | |
| load_depth=False, | |
| preprocess=None, | |
| imgnet_normalize=True, | |
| dataset_size=-1, | |
| trainer_name='input_rec', | |
| use_lmdb=False, | |
| infi_sampler=True | |
| ): | |
| # st() | |
| # dataset_cls = { | |
| # 'input_rec': MultiViewDataset, | |
| # 'nv': NovelViewDataset, | |
| # }[trainer_name] | |
| # st() | |
| if use_lmdb: | |
| logger.log('using LMDB dataset') | |
| # dataset_cls = LMDBDataset_MV # 2.5-3iter/s, but unstable, drops to 1 later. | |
| if 'nv' in trainer_name: | |
| dataset_cls = LMDBDataset_NV_Compressed # 2.5-3iter/s, but unstable, drops to 1 later. | |
| else: | |
| dataset_cls = LMDBDataset_MV_Compressed # 2.5-3iter/s, but unstable, drops to 1 later. | |
| # dataset = dataset_cls(file_path) | |
| else: | |
| if 'nv' in trainer_name: | |
| dataset_cls = NovelViewDataset # 1.5-2iter/s | |
| else: | |
| dataset_cls = MultiViewDataset | |
| dataset = dataset_cls(file_path, | |
| reso, | |
| reso_encoder, | |
| test=False, | |
| preprocess=preprocess, | |
| load_depth=load_depth, | |
| imgnet_normalize=imgnet_normalize, | |
| dataset_size=dataset_size) | |
| logger.log('dataset_cls: {}, dataset size: {}'.format( | |
| trainer_name, len(dataset))) | |
| loader = DataLoader(dataset, | |
| batch_size=batch_size, | |
| num_workers=num_workers, | |
| drop_last=False, | |
| pin_memory=True, | |
| persistent_workers=num_workers > 0, | |
| shuffle=False) | |
| return loader | |
| def load_data( | |
| file_path="", | |
| reso=64, | |
| reso_encoder=224, | |
| batch_size=1, | |
| # shuffle=True, | |
| num_workers=6, | |
| load_depth=False, | |
| preprocess=None, | |
| imgnet_normalize=True, | |
| dataset_size=-1, | |
| trainer_name='input_rec', | |
| use_lmdb=False, | |
| infi_sampler=True | |
| ): | |
| # st() | |
| # dataset_cls = { | |
| # 'input_rec': MultiViewDataset, | |
| # 'nv': NovelViewDataset, | |
| # }[trainer_name] | |
| # st() | |
| if use_lmdb: | |
| logger.log('using LMDB dataset') | |
| # dataset_cls = LMDBDataset_MV # 2.5-3iter/s, but unstable, drops to 1 later. | |
| if 'nv' in trainer_name: | |
| dataset_cls = LMDBDataset_NV_Compressed # 2.5-3iter/s, but unstable, drops to 1 later. | |
| else: | |
| dataset_cls = LMDBDataset_MV_Compressed # 2.5-3iter/s, but unstable, drops to 1 later. | |
| # dataset = dataset_cls(file_path) | |
| else: | |
| if 'nv' in trainer_name: | |
| dataset_cls = NovelViewDataset # 1.5-2iter/s | |
| else: | |
| dataset_cls = MultiViewDataset | |
| dataset = dataset_cls(file_path, | |
| reso, | |
| reso_encoder, | |
| test=False, | |
| preprocess=preprocess, | |
| load_depth=load_depth, | |
| imgnet_normalize=imgnet_normalize, | |
| dataset_size=dataset_size) | |
| logger.log('dataset_cls: {}, dataset size: {}'.format( | |
| trainer_name, len(dataset))) | |
| # st() | |
| if infi_sampler: | |
| train_sampler = DistributedSampler(dataset=dataset, | |
| shuffle=True, | |
| drop_last=True) | |
| loader = DataLoader(dataset, | |
| batch_size=batch_size, | |
| num_workers=num_workers, | |
| drop_last=True, | |
| pin_memory=True, | |
| persistent_workers=num_workers > 0, | |
| sampler=train_sampler) | |
| while True: | |
| yield from loader | |
| else: | |
| # loader = DataLoader(dataset, | |
| # batch_size=batch_size, | |
| # num_workers=num_workers, | |
| # drop_last=False, | |
| # pin_memory=True, | |
| # persistent_workers=num_workers > 0, | |
| # shuffle=False) | |
| st() | |
| return dataset | |
| def load_eval_rays(file_path="", | |
| reso=64, | |
| reso_encoder=224, | |
| imgnet_normalize=True): | |
| dataset = MultiViewDataset(file_path, | |
| reso, | |
| reso_encoder, | |
| imgnet_normalize=imgnet_normalize) | |
| pose_list = dataset.single_pose_list | |
| ray_list = [] | |
| for pose_fname in pose_list: | |
| # c2w = dataset.get_c2w(pose_fname).reshape(1,4,4) #[1, 4, 4] | |
| # rays_o, rays_d = dataset.gen_rays(c2w) | |
| # ray_list.append( | |
| # [rays_o.unsqueeze(0), | |
| # rays_d.unsqueeze(0), | |
| # c2w.reshape(-1, 16)]) | |
| c2w = dataset.get_c2w(pose_fname).reshape(16) #[1, 4, 4] | |
| c = torch.cat([c2w, dataset.intrinsics], | |
| dim=0).reshape(25) # 25, no '1' dim needed. | |
| ray_list.append(c) | |
| return ray_list | |
| def load_eval_data(file_path="", | |
| reso=64, | |
| reso_encoder=224, | |
| batch_size=1, | |
| num_workers=1, | |
| load_depth=False, | |
| preprocess=None, | |
| imgnet_normalize=True, | |
| interval=1, **kwargs): | |
| dataset = MultiViewDataset(file_path, | |
| reso, | |
| reso_encoder, | |
| preprocess=preprocess, | |
| load_depth=load_depth, | |
| test=True, | |
| imgnet_normalize=imgnet_normalize, | |
| interval=interval) | |
| print('eval dataset size: {}'.format(len(dataset))) | |
| # train_sampler = DistributedSampler(dataset=dataset) | |
| loader = DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| num_workers=num_workers, | |
| drop_last=False, | |
| shuffle=False, | |
| ) | |
| # sampler=train_sampler) | |
| return loader | |
| def load_memory_data(file_path="", | |
| reso=64, | |
| reso_encoder=224, | |
| batch_size=1, | |
| num_workers=1, | |
| load_depth=True, | |
| preprocess=None, | |
| imgnet_normalize=True): | |
| # load a single-instance into the memory to speed up training IO | |
| dataset = MultiViewDataset(file_path, | |
| reso, | |
| reso_encoder, | |
| preprocess=preprocess, | |
| load_depth=True, | |
| test=False, | |
| overfitting=True, | |
| imgnet_normalize=imgnet_normalize, | |
| overfitting_bs=batch_size) | |
| logger.log('!!!!!!! memory dataset size: {} !!!!!!'.format(len(dataset))) | |
| # train_sampler = DistributedSampler(dataset=dataset) | |
| loader = DataLoader( | |
| dataset, | |
| batch_size=len(dataset), | |
| num_workers=num_workers, | |
| drop_last=False, | |
| shuffle=False, | |
| ) | |
| all_data: dict = next(iter(loader)) | |
| while True: | |
| start_idx = np.random.randint(0, len(dataset) - batch_size + 1) | |
| yield { | |
| k: v[start_idx:start_idx + batch_size] | |
| for k, v in all_data.items() | |
| } | |
| class MultiViewDataset(Dataset): | |
| def __init__(self, | |
| file_path, | |
| reso, | |
| reso_encoder, | |
| preprocess=None, | |
| classes=False, | |
| load_depth=False, | |
| test=False, | |
| scene_scale=1, | |
| overfitting=False, | |
| imgnet_normalize=True, | |
| dataset_size=-1, | |
| overfitting_bs=-1, | |
| interval=1): | |
| self.file_path = file_path | |
| self.overfitting = overfitting | |
| self.scene_scale = scene_scale | |
| self.reso = reso | |
| self.reso_encoder = reso_encoder | |
| self.classes = False | |
| self.load_depth = load_depth | |
| self.preprocess = preprocess | |
| assert not self.classes, "Not support class condition now." | |
| # self.ins_list = os.listdir(self.file_path) | |
| # if test: # TODO | |
| dataset_name = Path(self.file_path).stem.split('_')[0] | |
| self.dataset_name = dataset_name | |
| if test: | |
| # ins_list_file = Path(self.file_path).parent / f'{dataset_name}_test_list.txt' # ? in domain | |
| if dataset_name == 'chair': | |
| self.ins_list = sorted(os.listdir( | |
| self.file_path))[1:2] # more diversity | |
| else: | |
| self.ins_list = sorted(os.listdir(self.file_path))[ | |
| 0:1] # the first 1 instance for evaluation reference. | |
| else: | |
| # self.ins_list = sorted(Path(self.file_path).glob('[0-8]*')) | |
| # self.ins_list = Path(self.file_path).glob('*') | |
| # self.ins_list = list(Path(self.file_path).glob('*'))[:dataset_size] | |
| # ins_list_file = Path( | |
| # self.file_path).parent / f'{dataset_name}s_train_list.txt' | |
| # assert ins_list_file.exists(), 'add training list for ShapeNet' | |
| # with open(ins_list_file, 'r') as f: | |
| # self.ins_list = [name.strip() for name in f.readlines()] | |
| # if dataset_name == 'chair': | |
| ins_list_file = Path( | |
| self.file_path).parent / f'{dataset_name}_train_list.txt' | |
| # st() | |
| assert ins_list_file.exists(), 'add training list for ShapeNet' | |
| with open(ins_list_file, 'r') as f: | |
| self.ins_list = [name.strip() | |
| for name in f.readlines()][:dataset_size] | |
| # else: | |
| # self.ins_list = Path(self.file_path).glob('*') | |
| if overfitting: | |
| self.ins_list = self.ins_list[:1] | |
| self.rgb_list = [] | |
| self.pose_list = [] | |
| self.depth_list = [] | |
| self.data_ins_list = [] | |
| self.instance_data_length = -1 | |
| for ins in self.ins_list: | |
| cur_rgb_path = os.path.join(self.file_path, ins, 'rgb') | |
| cur_pose_path = os.path.join(self.file_path, ins, 'pose') | |
| cur_all_fname = sorted([ | |
| t.split('.')[0] for t in os.listdir(cur_rgb_path) | |
| if 'depth' not in t | |
| ][::interval]) | |
| if self.instance_data_length == -1: | |
| self.instance_data_length = len(cur_all_fname) | |
| else: | |
| assert len(cur_all_fname) == self.instance_data_length | |
| # ! check filtered data | |
| # for idx in range(len(cur_all_fname)): | |
| # fname = cur_all_fname[idx] | |
| # if not Path(os.path.join(cur_rgb_path, fname + '.png') ).exists(): | |
| # cur_all_fname.remove(fname) | |
| # del cur_all_fname[idx] | |
| if test: | |
| mid_index = len(cur_all_fname) // 3 * 2 | |
| cur_all_fname.insert(0, cur_all_fname[mid_index]) | |
| self.pose_list += ([ | |
| os.path.join(cur_pose_path, fname + '.txt') | |
| for fname in cur_all_fname | |
| ]) | |
| self.rgb_list += ([ | |
| os.path.join(cur_rgb_path, fname + '.png') | |
| for fname in cur_all_fname | |
| ]) | |
| self.depth_list += ([ | |
| os.path.join(cur_rgb_path, fname + '_depth0001.exr') | |
| for fname in cur_all_fname | |
| ]) | |
| self.data_ins_list += ([ins] * len(cur_all_fname)) | |
| # validate overfitting on images | |
| if overfitting: | |
| # bs=9 | |
| # self.pose_list = self.pose_list[::50//9+1] | |
| # self.rgb_list = self.rgb_list[::50//9+1] | |
| # self.depth_list = self.depth_list[::50//9+1] | |
| # bs=6 | |
| # self.pose_list = self.pose_list[::50//6+1] | |
| # self.rgb_list = self.rgb_list[::50//6+1] | |
| # self.depth_list = self.depth_list[::50//6+1] | |
| # bs=3 | |
| assert overfitting_bs != -1 | |
| # bs=1 | |
| # self.pose_list = self.pose_list[25:26] | |
| # self.rgb_list = self.rgb_list[25:26] | |
| # self.depth_list = self.depth_list[25:26] | |
| # uniform pose sampling | |
| self.pose_list = self.pose_list[::50//overfitting_bs+1] | |
| self.rgb_list = self.rgb_list[::50//overfitting_bs+1] | |
| self.depth_list = self.depth_list[::50//overfitting_bs+1] | |
| # sequentially sampling pose | |
| # self.pose_list = self.pose_list[25:25+overfitting_bs] | |
| # self.rgb_list = self.rgb_list[25:25+overfitting_bs] | |
| # self.depth_list = self.depth_list[25:25+overfitting_bs] | |
| # duplicate the same pose | |
| # self.pose_list = [self.pose_list[25]] * overfitting_bs | |
| # self.rgb_list = [self.rgb_list[25]] * overfitting_bs | |
| # self.depth_list = [self.depth_list[25]] * overfitting_bs | |
| # self.pose_list = [self.pose_list[28]] * overfitting_bs | |
| # self.rgb_list = [self.rgb_list[28]] * overfitting_bs | |
| # self.depth_list = [self.depth_list[28]] * overfitting_bs | |
| self.single_pose_list = [ | |
| os.path.join(cur_pose_path, fname + '.txt') | |
| for fname in cur_all_fname | |
| ] | |
| # st() | |
| # if imgnet_normalize: | |
| transformations = [ | |
| transforms.ToTensor(), # [0,1] range | |
| ] | |
| if imgnet_normalize: | |
| transformations.append( | |
| transforms.Normalize((0.485, 0.456, 0.406), | |
| (0.229, 0.224, 0.225)) # type: ignore | |
| ) | |
| else: | |
| transformations.append( | |
| transforms.Normalize((0.5, 0.5, 0.5), | |
| (0.5, 0.5, 0.5))) # type: ignore | |
| self.normalize = transforms.Compose(transformations) | |
| # self.normalize_normalrange = transforms.Compose([ | |
| # transforms.ToTensor(),# [0,1] range | |
| # transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
| # ]) | |
| fx = fy = 525 | |
| cx = cy = 256 # rendering default K | |
| factor = self.reso / (cx * 2) # 128 / 512 | |
| self.fx = fx * factor | |
| self.fy = fy * factor | |
| self.cx = cx * factor | |
| self.cy = cy * factor | |
| # ! fix scale for triplane ray_sampler(), here we adopt [0,1] uv range, not [0, w] img space range. | |
| self.cx /= self.reso # 0.5 | |
| self.cy /= self.reso # 0.5 | |
| self.fx /= self.reso | |
| self.fy /= self.reso | |
| intrinsics = np.array([[self.fx, 0, self.cx], [0, self.fy, self.cy], | |
| [0, 0, 1]]).reshape(9) | |
| # self.intrinsics = torch.from_numpy(intrinsics).float() | |
| self.intrinsics = intrinsics | |
| def __len__(self): | |
| return len(self.rgb_list) | |
| def get_c2w(self, pose_fname): | |
| with open(pose_fname, 'r') as f: | |
| cam2world = f.readline().strip() | |
| cam2world = [float(t) for t in cam2world.split(' ')] | |
| c2w = torch.tensor(cam2world, dtype=torch.float32).reshape(4, 4) | |
| return c2w | |
| def gen_rays(self, c2w): | |
| # Generate rays | |
| self.h = self.reso | |
| self.w = self.reso | |
| yy, xx = torch.meshgrid( | |
| torch.arange(self.h, dtype=torch.float32) + 0.5, | |
| torch.arange(self.w, dtype=torch.float32) + 0.5, | |
| indexing='ij') | |
| xx = (xx - self.cx) / self.fx | |
| yy = (yy - self.cy) / self.fy | |
| zz = torch.ones_like(xx) | |
| dirs = torch.stack((xx, yy, zz), dim=-1) # OpenCV convention | |
| dirs /= torch.norm(dirs, dim=-1, keepdim=True) | |
| dirs = dirs.reshape(1, -1, 3, 1) | |
| del xx, yy, zz | |
| dirs = (c2w[:, None, :3, :3] @ dirs)[..., 0] | |
| origins = c2w[:, None, :3, 3].expand(-1, self.h * self.w, | |
| -1).contiguous() | |
| origins = origins.view(-1, 3) | |
| dirs = dirs.view(-1, 3) | |
| return origins, dirs | |
| def read_depth(self, idx): | |
| depth_path = self.depth_list[idx] | |
| # image_path = os.path.join(depth_fname, self.image_names[index]) | |
| exr = OpenEXR.InputFile(depth_path) | |
| header = exr.header() | |
| size = (header['dataWindow'].max.x - header['dataWindow'].min.x + 1, | |
| header['dataWindow'].max.y - header['dataWindow'].min.y + 1) | |
| FLOAT = Imath.PixelType(Imath.PixelType.FLOAT) | |
| depth_str = exr.channel('B', FLOAT) | |
| depth = np.frombuffer(depth_str, | |
| dtype=np.float32).reshape(size[1], | |
| size[0]) # H W | |
| depth = np.nan_to_num(depth, posinf=0, neginf=0) | |
| depth = depth.reshape(size) | |
| def resize_depth_mask(depth_to_resize, resolution): | |
| depth_resized = cv2.resize(depth_to_resize, | |
| (resolution, resolution), | |
| interpolation=cv2.INTER_LANCZOS4) | |
| # interpolation=cv2.INTER_AREA) | |
| return depth_resized > 0 # type: ignore | |
| fg_mask_reso = resize_depth_mask(depth, self.reso) | |
| fg_mask_sr = resize_depth_mask(depth, 128) | |
| # depth = cv2.resize(depth, (self.reso, self.reso), | |
| # interpolation=cv2.INTER_LANCZOS4) | |
| # interpolation=cv2.INTER_AREA) | |
| # depth_mask = depth > 0 | |
| # depth = np.expand_dims(depth, axis=0).reshape(size) | |
| # return torch.from_numpy(depth) | |
| return torch.from_numpy(depth), torch.from_numpy( | |
| fg_mask_reso), torch.from_numpy(fg_mask_sr) | |
| def load_bbox(self, mask): | |
| nonzero_value = torch.nonzero(mask) | |
| height, width = nonzero_value.max(dim=0)[0] | |
| top, left = nonzero_value.min(dim=0)[0] | |
| bbox = torch.tensor([top, left, height, width], dtype=torch.float32) | |
| return bbox | |
| def __getitem__(self, idx): | |
| rgb_fname = self.rgb_list[idx] | |
| pose_fname = self.pose_list[idx] | |
| raw_img = imageio.imread(rgb_fname) | |
| if self.preprocess is None: | |
| img_to_encoder = cv2.resize(raw_img, | |
| (self.reso_encoder, self.reso_encoder), | |
| interpolation=cv2.INTER_LANCZOS4) | |
| # interpolation=cv2.INTER_AREA) | |
| img_to_encoder = img_to_encoder[ | |
| ..., :3] #[3, reso_encoder, reso_encoder] | |
| img_to_encoder = self.normalize(img_to_encoder) | |
| else: | |
| img_to_encoder = self.preprocess(Image.open(rgb_fname)) # clip | |
| img = cv2.resize(raw_img, (self.reso, self.reso), | |
| interpolation=cv2.INTER_LANCZOS4) | |
| # interpolation=cv2.INTER_AREA) | |
| # img_sr = cv2.resize(raw_img, (512, 512), interpolation=cv2.INTER_AREA) | |
| # img_sr = cv2.resize(raw_img, (256, 256), interpolation=cv2.INTER_AREA) # just as refinement, since eg3d uses 64->128 final resolution | |
| # img_sr = cv2.resize(raw_img, (128, 128), interpolation=cv2.INTER_AREA) # just as refinement, since eg3d uses 64->128 final resolution | |
| img_sr = cv2.resize( | |
| raw_img, (128, 128), interpolation=cv2.INTER_LANCZOS4 | |
| ) # just as refinement, since eg3d uses 64->128 final resolution | |
| # img = torch.from_numpy(img)[..., :3].permute( | |
| # 2, 0, 1) / 255.0 #[3, reso, reso] | |
| img = torch.from_numpy(img)[..., :3].permute( | |
| 2, 0, 1 | |
| ) / 127.5 - 1 #[3, reso, reso], normalize to [-1,1], follow triplane range | |
| img_sr = torch.from_numpy(img_sr)[..., :3].permute( | |
| 2, 0, 1 | |
| ) / 127.5 - 1 #[3, reso, reso], normalize to [-1,1], follow triplane range | |
| # c2w = self.get_c2w(pose_fname).reshape(1, 4, 4) #[1, 4, 4] | |
| # rays_o, rays_d = self.gen_rays(c2w) | |
| # return img_to_encoder, img, rays_o, rays_d, c2w.reshape(-1) | |
| c2w = self.get_c2w(pose_fname).reshape(16) #[1, 4, 4] -> [1, 16] | |
| # c = np.concatenate([c2w, self.intrinsics], axis=0).reshape(25) # 25, no '1' dim needed. | |
| c = torch.cat([c2w, torch.from_numpy(self.intrinsics)], | |
| dim=0).reshape(25) # 25, no '1' dim needed. | |
| ret_dict = { | |
| # 'rgb_fname': rgb_fname, | |
| 'img_to_encoder': img_to_encoder, | |
| 'img': img, | |
| 'c': c, | |
| 'img_sr': img_sr, | |
| # 'ins_name': self.data_ins_list[idx] | |
| } | |
| if self.load_depth: | |
| depth, depth_mask, depth_mask_sr = self.read_depth(idx) | |
| bbox = self.load_bbox(depth_mask) | |
| ret_dict.update({ | |
| 'depth': depth, | |
| 'depth_mask': depth_mask, | |
| 'depth_mask_sr': depth_mask_sr, | |
| 'bbox': bbox | |
| }) | |
| # rays_o, rays_d = self.gen_rays(c2w) | |
| # return img_to_encoder, img, c | |
| return ret_dict | |
| class MultiViewDatasetforLMDB(MultiViewDataset): | |
| def __init__(self, | |
| file_path, | |
| reso, | |
| reso_encoder, | |
| preprocess=None, | |
| classes=False, | |
| load_depth=False, | |
| test=False, | |
| scene_scale=1, | |
| overfitting=False, | |
| imgnet_normalize=True, | |
| dataset_size=-1, | |
| overfitting_bs=-1): | |
| super().__init__(file_path, reso, reso_encoder, preprocess, classes, | |
| load_depth, test, scene_scale, overfitting, | |
| imgnet_normalize, dataset_size, overfitting_bs) | |
| def __len__(self): | |
| return super().__len__() | |
| # return 100 # for speed debug | |
| def __getitem__(self, idx): | |
| # ret_dict = super().__getitem__(idx) | |
| rgb_fname = self.rgb_list[idx] | |
| pose_fname = self.pose_list[idx] | |
| raw_img = imageio.imread(rgb_fname)[..., :3] | |
| c2w = self.get_c2w(pose_fname).reshape(16) #[1, 4, 4] -> [1, 16] | |
| # c = np.concatenate([c2w, self.intrinsics], axis=0).reshape(25) # 25, no '1' dim needed. | |
| c = torch.cat([c2w, torch.from_numpy(self.intrinsics)], | |
| dim=0).reshape(25) # 25, no '1' dim needed. | |
| depth, depth_mask, depth_mask_sr = self.read_depth(idx) | |
| bbox = self.load_bbox(depth_mask) | |
| ret_dict = { | |
| 'raw_img': raw_img, | |
| 'c': c, | |
| 'depth': depth, | |
| # 'depth_mask': depth_mask, # 64x64 here? | |
| 'bbox': bbox | |
| } | |
| return ret_dict | |
| def load_data_dryrun( | |
| file_path="", | |
| reso=64, | |
| reso_encoder=224, | |
| batch_size=1, | |
| # shuffle=True, | |
| num_workers=6, | |
| load_depth=False, | |
| preprocess=None, | |
| imgnet_normalize=True): | |
| # st() | |
| dataset = MultiViewDataset(file_path, | |
| reso, | |
| reso_encoder, | |
| test=False, | |
| preprocess=preprocess, | |
| load_depth=load_depth, | |
| imgnet_normalize=imgnet_normalize) | |
| print('dataset size: {}'.format(len(dataset))) | |
| # st() | |
| # train_sampler = DistributedSampler(dataset=dataset) | |
| loader = DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| num_workers=num_workers, | |
| # shuffle=shuffle, | |
| drop_last=False, | |
| ) | |
| # sampler=train_sampler) | |
| return loader | |
| class NovelViewDataset(MultiViewDataset): | |
| """novel view prediction version. | |
| """ | |
| def __init__(self, | |
| file_path, | |
| reso, | |
| reso_encoder, | |
| preprocess=None, | |
| classes=False, | |
| load_depth=False, | |
| test=False, | |
| scene_scale=1, | |
| overfitting=False, | |
| imgnet_normalize=True, | |
| dataset_size=-1, | |
| overfitting_bs=-1): | |
| super().__init__(file_path, reso, reso_encoder, preprocess, classes, | |
| load_depth, test, scene_scale, overfitting, | |
| imgnet_normalize, dataset_size, overfitting_bs) | |
| def __getitem__(self, idx): | |
| input_view = super().__getitem__( | |
| idx) # get previous input view results | |
| # get novel view of the same instance | |
| novel_view = super().__getitem__( | |
| (idx // self.instance_data_length) * self.instance_data_length + | |
| random.randint(0, self.instance_data_length - 1)) | |
| # assert input_view['ins_name'] == novel_view['ins_name'], 'should sample novel view from the same instance' | |
| input_view.update({f'nv_{k}': v for k, v in novel_view.items()}) | |
| return input_view | |
| def load_data_for_lmdb( | |
| file_path="", | |
| reso=64, | |
| reso_encoder=224, | |
| batch_size=1, | |
| # shuffle=True, | |
| num_workers=6, | |
| load_depth=False, | |
| preprocess=None, | |
| imgnet_normalize=True, | |
| dataset_size=-1, | |
| trainer_name='input_rec'): | |
| # st() | |
| # dataset_cls = { | |
| # 'input_rec': MultiViewDataset, | |
| # 'nv': NovelViewDataset, | |
| # }[trainer_name] | |
| # if 'nv' in trainer_name: | |
| # dataset_cls = NovelViewDataset | |
| # else: | |
| # dataset_cls = MultiViewDataset | |
| dataset_cls = MultiViewDatasetforLMDB | |
| dataset = dataset_cls(file_path, | |
| reso, | |
| reso_encoder, | |
| test=False, | |
| preprocess=preprocess, | |
| load_depth=load_depth, | |
| imgnet_normalize=imgnet_normalize, | |
| dataset_size=dataset_size) | |
| logger.log('dataset_cls: {}, dataset size: {}'.format( | |
| trainer_name, len(dataset))) | |
| # train_sampler = DistributedSampler(dataset=dataset, shuffle=True, drop_last=True) | |
| loader = DataLoader( | |
| dataset, | |
| shuffle=False, | |
| batch_size=batch_size, | |
| num_workers=num_workers, | |
| drop_last=False, | |
| prefetch_factor=2, | |
| # prefetch_factor=3, | |
| pin_memory=True, | |
| persistent_workers=True, | |
| ) | |
| # sampler=train_sampler) | |
| # while True: | |
| # yield from loader | |
| return loader, dataset.dataset_name, len(dataset) | |
| class LMDBDataset(Dataset): | |
| def __init__(self, lmdb_path): | |
| self.env = lmdb.open( | |
| lmdb_path, | |
| readonly=True, | |
| max_readers=32, | |
| lock=False, | |
| readahead=False, | |
| meminit=False, | |
| ) | |
| self.num_samples = self.env.stat()['entries'] | |
| # self.start_idx = self.env.stat()['start_idx'] | |
| # self.end_idx = self.env.stat()['end_idx'] | |
| def __len__(self): | |
| return self.num_samples | |
| def __getitem__(self, idx): | |
| with self.env.begin(write=False) as txn: | |
| key = str(idx).encode('utf-8') | |
| value = txn.get(key) | |
| sample = pickle.loads(value) | |
| return sample | |
| def resize_depth_mask(depth_to_resize, resolution): | |
| depth_resized = cv2.resize(depth_to_resize, (resolution, resolution), | |
| interpolation=cv2.INTER_LANCZOS4) | |
| # interpolation=cv2.INTER_AREA) | |
| return depth_resized, depth_resized > 0 # type: ignore | |
| class LMDBDataset_MV(LMDBDataset): | |
| def __init__(self, | |
| lmdb_path, | |
| reso, | |
| reso_encoder, | |
| imgnet_normalize=True, | |
| **kwargs): | |
| super().__init__(lmdb_path) | |
| self.reso_encoder = reso_encoder | |
| self.reso = reso | |
| transformations = [ | |
| transforms.ToTensor(), # [0,1] range | |
| ] | |
| if imgnet_normalize: | |
| transformations.append( | |
| transforms.Normalize((0.485, 0.456, 0.406), | |
| (0.229, 0.224, 0.225)) # type: ignore | |
| ) | |
| else: | |
| transformations.append( | |
| transforms.Normalize((0.5, 0.5, 0.5), | |
| (0.5, 0.5, 0.5))) # type: ignore | |
| self.normalize = transforms.Compose(transformations) | |
| def _post_process_sample(self, raw_img, depth): | |
| # if raw_img.shape[-1] == 4: # ! set bg to white | |
| # alpha_mask = raw_img[..., -1:] > 0 | |
| # raw_img = alpha_mask * raw_img[..., :3] + (1-alpha_mask) * np.ones_like(raw_img[..., :3]) * 255 | |
| # raw_img = raw_img.astype(np.uint8) | |
| # img_to_encoder = cv2.resize(sample.pop('raw_img'), | |
| img_to_encoder = cv2.resize(raw_img, | |
| (self.reso_encoder, self.reso_encoder), | |
| interpolation=cv2.INTER_LANCZOS4) | |
| # interpolation=cv2.INTER_AREA) | |
| img_to_encoder = img_to_encoder[..., : | |
| 3] #[3, reso_encoder, reso_encoder] | |
| img_to_encoder = self.normalize(img_to_encoder) | |
| img = cv2.resize(raw_img, (self.reso, self.reso), | |
| interpolation=cv2.INTER_LANCZOS4) | |
| if img.shape[-1] == 4: | |
| alpha_mask = img[..., -1:] > 0 | |
| img = alpha_mask * img[..., :3] + (1-alpha_mask) * np.ones_like(img[..., :3]) * 255 | |
| img = torch.from_numpy(img)[..., :3].permute( | |
| 2, 0, 1 | |
| ) / 127.5 - 1 #[3, reso, reso], normalize to [-1,1], follow triplane range | |
| img_sr = torch.from_numpy(raw_img)[..., :3].permute( | |
| 2, 0, 1 | |
| ) / 127.5 - 1 #[3, reso, reso], normalize to [-1,1], follow triplane range | |
| # depth | |
| # fg_mask_reso = resize_depth_mask(sample['depth'], self.reso) | |
| depth_reso, fg_mask_reso = resize_depth_mask(depth, self.reso) | |
| return { | |
| # **sample, | |
| 'img_to_encoder': img_to_encoder, | |
| 'img': img, | |
| 'depth_mask': fg_mask_reso, | |
| 'img_sr': img_sr, | |
| 'depth': depth_reso, | |
| # ! no need to load img_sr for now | |
| } | |
| def __getitem__(self, idx): | |
| sample = super().__getitem__(idx) | |
| # do transformations online | |
| return self._post_process_sample(sample['raw_img'], sample['depth']) | |
| # return sample | |
| def load_bytes(inp_bytes, dtype, shape): | |
| return np.frombuffer(inp_bytes, dtype=dtype).reshape(shape).copy() | |
| # Function to decompress an image using gzip and open with imageio | |
| def decompress_and_open_image_gzip(compressed_data, is_img=False): | |
| # Decompress the image data using gzip | |
| decompressed_data = gzip.decompress(compressed_data) | |
| # Read the decompressed image using imageio | |
| if is_img: | |
| image = imageio.v3.imread(io.BytesIO(decompressed_data)).copy() | |
| return image | |
| return decompressed_data | |
| # Function to decompress an array using gzip | |
| def decompress_array(compressed_data, shape, dtype): | |
| # Decompress the array data using gzip | |
| decompressed_data = gzip.decompress(compressed_data) | |
| # Convert the decompressed data to a NumPy array | |
| # arr = np.frombuffer(decompressed_data, dtype=dtype).reshape(shape) | |
| return load_bytes(decompressed_data, dtype, shape) | |
| class LMDBDataset_MV_Compressed(LMDBDataset_MV): | |
| def __init__(self, | |
| lmdb_path, | |
| reso, | |
| reso_encoder, | |
| imgnet_normalize=True, | |
| **kwargs): | |
| super().__init__(lmdb_path, reso, reso_encoder, imgnet_normalize, | |
| **kwargs) | |
| with self.env.begin(write=False) as txn: | |
| self.length = int( | |
| txn.get('length'.encode('utf-8')).decode('utf-8')) - 40 | |
| self.load_image_fn = partial(decompress_and_open_image_gzip, | |
| is_img=True) | |
| def __len__(self): | |
| return self.length | |
| def _load_lmdb_data(self, idx): | |
| with self.env.begin(write=False) as txn: | |
| raw_img_key = f'{idx}-raw_img'.encode('utf-8') | |
| raw_img = self.load_image_fn(txn.get(raw_img_key)) | |
| depth_key = f'{idx}-depth'.encode('utf-8') | |
| depth = decompress_array(txn.get(depth_key), (512,512), np.float32) | |
| c_key = f'{idx}-c'.encode('utf-8') | |
| c = decompress_array(txn.get(c_key), (25, ), np.float32) | |
| bbox_key = f'{idx}-bbox'.encode('utf-8') | |
| bbox = decompress_array(txn.get(bbox_key), (4, ), np.float32) | |
| return raw_img, depth, c, bbox | |
| def __getitem__(self, idx): | |
| # sample = super(LMDBDataset).__getitem__(idx) | |
| # do gzip uncompress online | |
| raw_img, depth, c, bbox = self._load_lmdb_data(idx) | |
| return { | |
| **self._post_process_sample(raw_img, depth), 'c': c, | |
| 'bbox': bbox*(self.reso/64.0), | |
| # 'depth': depth, | |
| } | |
| class LMDBDataset_NV_Compressed(LMDBDataset_MV_Compressed): | |
| def __init__(self, lmdb_path, reso, reso_encoder, imgnet_normalize=True, **kwargs): | |
| super().__init__(lmdb_path, reso, reso_encoder, imgnet_normalize, **kwargs) | |
| self.instance_data_length = 50 # | |
| def __getitem__(self, idx): | |
| input_view = super().__getitem__( | |
| idx) # get previous input view results | |
| # get novel view of the same instance | |
| try: | |
| novel_view = super().__getitem__( | |
| (idx // self.instance_data_length) * self.instance_data_length + | |
| random.randint(0, self.instance_data_length - 1)) | |
| except Exception as e: | |
| raise NotImplementedError(idx) | |
| assert input_view['ins_name'] == novel_view['ins_name'], 'should sample novel view from the same instance' | |
| input_view.update({f'nv_{k}': v for k, v in novel_view.items()}) | |
| return input_view |