Spaces:
Running
on
Zero
Running
on
Zero
| import copy | |
| import functools | |
| import json | |
| import os | |
| from pathlib import Path | |
| from pdb import set_trace as st | |
| import matplotlib.pyplot as plt | |
| import traceback | |
| import blobfile as bf | |
| import imageio | |
| import numpy as np | |
| # from sympy import O | |
| import torch as th | |
| import torch.distributed as dist | |
| import torchvision | |
| from PIL import Image | |
| from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
| from torch.optim import AdamW | |
| from torch.utils.tensorboard import SummaryWriter | |
| from tqdm import tqdm | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
| from guided_diffusion.nn import update_ema | |
| from guided_diffusion.resample import LossAwareSampler, UniformSampler | |
| from guided_diffusion.train_util import (calc_average_loss, | |
| find_ema_checkpoint, | |
| find_resume_checkpoint, | |
| get_blob_logdir, log_rec3d_loss_dict, | |
| parse_resume_step_from_filename) | |
| from .camera_utils import LookAtPoseSampler, FOV_to_intrinsics | |
| # from ..guided_diffusion.train_util import TrainLoop | |
| def flip_yaw(pose_matrix): | |
| flipped = pose_matrix.clone() | |
| flipped[:, 0, 1] *= -1 | |
| flipped[:, 0, 2] *= -1 | |
| flipped[:, 1, 0] *= -1 | |
| flipped[:, 2, 0] *= -1 | |
| flipped[:, 0, 3] *= -1 | |
| # st() | |
| return flipped | |
| # basic reconstruction model | |
| class TrainLoopBasic: | |
| def __init__( | |
| self, | |
| *, | |
| rec_model, | |
| loss_class, | |
| # diffusion, | |
| data, | |
| eval_data, | |
| batch_size, | |
| microbatch, | |
| lr, | |
| ema_rate, | |
| log_interval, | |
| eval_interval, | |
| save_interval, | |
| resume_checkpoint, | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| # schedule_sampler=None, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| iterations=10001, | |
| load_submodule_name='', | |
| ignore_resume_opt=False, | |
| model_name='rec', | |
| use_amp=False, | |
| compile=False, | |
| **kwargs): | |
| self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512)) | |
| self.pool_256 = th.nn.AdaptiveAvgPool2d((256, 256)) | |
| self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128)) | |
| self.pool_64 = th.nn.AdaptiveAvgPool2d((64, 64)) | |
| self.rec_model = rec_model | |
| self.loss_class = loss_class | |
| # self.diffusion = diffusion | |
| # self.schedule_sampler = schedule_sampler or UniformSampler(diffusion) | |
| self.data = data | |
| self.eval_data = eval_data | |
| self.batch_size = batch_size | |
| self.microbatch = microbatch if microbatch > 0 else batch_size | |
| self.lr = lr | |
| self.ema_rate = ([ema_rate] if isinstance(ema_rate, float) else | |
| [float(x) for x in ema_rate.split(",")]) | |
| self.log_interval = log_interval | |
| self.eval_interval = eval_interval | |
| self.save_interval = save_interval | |
| self.iterations = iterations | |
| self.resume_checkpoint = resume_checkpoint | |
| self.use_fp16 = use_fp16 | |
| self.fp16_scale_growth = fp16_scale_growth | |
| self.weight_decay = weight_decay | |
| self.lr_anneal_steps = lr_anneal_steps | |
| self.step = 0 | |
| self.resume_step = 0 | |
| # self.global_batch = self.batch_size * dist.get_world_size() | |
| self.global_batch = self.batch_size * dist_util.get_world_size() | |
| self.sync_cuda = th.cuda.is_available() | |
| # self._load_and_sync_parameters(load_submodule_name) | |
| self._load_and_sync_parameters() | |
| self.dtype = th.float32 # tf32 by default | |
| if use_amp: | |
| self.dtype = th.bfloat16 | |
| self.mp_trainer_rec = MixedPrecisionTrainer( | |
| model=self.rec_model, | |
| use_fp16=self.use_fp16, | |
| fp16_scale_growth=fp16_scale_growth, | |
| model_name=model_name, | |
| use_amp=use_amp) | |
| self.writer = SummaryWriter(log_dir=f'{logger.get_dir()}/runs') | |
| self.opt = AdamW(self._init_optim_groups(kwargs)) | |
| if dist_util.get_rank() == 0: | |
| logger.log(self.opt) | |
| if self.resume_step: | |
| if not ignore_resume_opt: | |
| self._load_optimizer_state() | |
| else: | |
| logger.warn("Ignoring optimizer state from checkpoint.") | |
| # Model was resumed, either due to a restart or a checkpoint | |
| # being specified at the command line. | |
| # self.ema_params = [ | |
| # self._load_ema_parameters(rate, load_submodule_name) for rate in self.ema_rate | |
| # ] | |
| self.ema_params = [ | |
| self._load_ema_parameters( | |
| rate, | |
| self.rec_model, | |
| self.mp_trainer_rec, | |
| model_name=self.mp_trainer_rec.model_name) | |
| for rate in self.ema_rate | |
| ] | |
| else: | |
| self.ema_params = [ | |
| copy.deepcopy(self.mp_trainer_rec.master_params) | |
| for _ in range(len(self.ema_rate)) | |
| ] | |
| # compile | |
| if compile: | |
| logger.log('compiling... ignore vit_decoder') | |
| # self.rec_model.encoder = th.compile(self.rec_model.encoder) | |
| self.rec_model.decoder.decoder_pred = th.compile( | |
| self.rec_model.decoder.decoder_pred) | |
| # self.rec_model.decoder.triplane_decoder = th.compile(self.rec_model.decoder.triplane_decoder) | |
| for module_k, sub_module in self.rec_model.decoder.superresolution.items( | |
| ): | |
| self.rec_model.decoder.superresolution[module_k] = th.compile( | |
| sub_module) | |
| if th.cuda.is_available(): | |
| self.use_ddp = True | |
| self.rec_model = th.nn.SyncBatchNorm.convert_sync_batchnorm( | |
| self.rec_model) | |
| self.rec_model = DDP( | |
| self.rec_model, | |
| device_ids=[dist_util.dev()], | |
| output_device=dist_util.dev(), | |
| broadcast_buffers=False, | |
| bucket_cap_mb=128, | |
| find_unused_parameters=False, | |
| ) | |
| else: | |
| if dist_util.get_world_size() > 1: | |
| logger.warn("Distributed training requires CUDA. " | |
| "Gradients will not be synchronized properly!") | |
| self.use_ddp = False | |
| self.rec_model = self.rec_model | |
| self.novel_view_poses = None | |
| th.cuda.empty_cache() | |
| def _init_optim_groups(self, kwargs): | |
| raise NotImplementedError('') | |
| def _load_and_sync_parameters(self, submodule_name=''): | |
| # resume_checkpoint, self.resume_step = find_resume_checkpoint() or self.resume_checkpoint | |
| resume_checkpoint = self.resume_checkpoint # * default behaviour | |
| # logger.log('resume_checkpoint', resume_checkpoint, self.resume_checkpoint) | |
| if resume_checkpoint: | |
| self.resume_step = parse_resume_step_from_filename( | |
| resume_checkpoint) | |
| if dist_util.get_rank() == 0: | |
| logger.log( | |
| f"loading model from checkpoint: {resume_checkpoint}...") | |
| map_location = { | |
| 'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
| } # configure map_location properly | |
| resume_state_dict = dist_util.load_state_dict( | |
| resume_checkpoint, map_location=map_location) | |
| if submodule_name != '': | |
| model_state_dict = getattr(self.rec_model, | |
| submodule_name).state_dict() | |
| if dist_util.get_rank() == 0: | |
| logger.log('loading submodule: ', submodule_name) | |
| else: | |
| model_state_dict = self.rec_model.state_dict() | |
| model = self.rec_model | |
| # for k, v in resume_state_dict.items(): | |
| # if k in model_state_dict.keys() and v.size( | |
| # ) == model_state_dict[k].size(): | |
| # model_state_dict[k] = v | |
| # else: | |
| # logger.log('!!!! ignore key: ', k, ": ", v.size()) | |
| for k, v in resume_state_dict.items(): | |
| if '._orig_mod' in k: # prefix in torch.compile | |
| k = k.replace('._orig_mod', '') | |
| if k in model_state_dict.keys(): | |
| if v.size() == model_state_dict[k].size(): | |
| model_state_dict[k] = v | |
| # model_state_dict[k].copy_(v) | |
| else: | |
| # if v.ndim > 1: | |
| # model_state_dict[k][:v.shape[0], :v.shape[1], ...] = v # load the decoder | |
| # model_state_dict[k][v.shape[0]:, v.shape[1]:, ...] = 0 | |
| # else: | |
| # model_state_dict[k][:v.shape[0], ...] = v # load the decoder | |
| # model_state_dict[k][v.shape[0]:, ...] = 0 | |
| # logger.log('!!!! size mismatch, partially load: ', k, ": ", v.size(), "state_dict: ", model_state_dict[k].size()) | |
| logger.log('!!!! size mismatch, ignore: ', k, ": ", | |
| v.size(), "state_dict: ", | |
| model_state_dict[k].size()) | |
| elif 'decoder.vit_decoder.blocks' in k: | |
| # st() | |
| # load from 2D ViT pre-trained into 3D ViT blocks. | |
| assert len(model.decoder.vit_decoder.blocks[0].vit_blks | |
| ) == 2 # assert depth=2 here. | |
| fusion_ca_depth = len( | |
| model.decoder.vit_decoder.blocks[0].vit_blks) | |
| vit_subblk_index = int(k.split('.')[3]) | |
| vit_blk_keyname = ('.').join(k.split('.')[4:]) | |
| fusion_blk_index = vit_subblk_index // fusion_ca_depth | |
| fusion_blk_subindex = vit_subblk_index % fusion_ca_depth | |
| model_state_dict[ | |
| f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}'] = v | |
| logger.log('load 2D ViT weight: {}'.format( | |
| f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}' | |
| )) | |
| else: | |
| logger.log( | |
| '!!!! ignore key, not in the model_state_dict: ', | |
| k, ": ", v.size()) | |
| logger.log('model loading finished') | |
| if submodule_name != '': | |
| getattr(self.rec_model, | |
| submodule_name).load_state_dict(model_state_dict, | |
| strict=True) | |
| else: | |
| self.rec_model.load_state_dict(model_state_dict, | |
| strict=False) | |
| # strict=True) | |
| if dist_util.get_world_size() > 1: | |
| # dist_util.sync_params(self.model.named_parameters()) | |
| dist_util.sync_params(self.rec_model.parameters()) | |
| logger.log('synced params') | |
| def _load_ema_parameters(self, | |
| rate, | |
| model=None, | |
| mp_trainer=None, | |
| model_name='ddpm'): | |
| if mp_trainer is None: | |
| mp_trainer = self.mp_trainer_rec | |
| if model is None: | |
| model = self.rec_model | |
| ema_params = copy.deepcopy(mp_trainer.master_params) | |
| # main_checkpoint, _ = find_resume_checkpoint( | |
| # self.resume_checkpoint, model_name) or self.resume_checkpoint | |
| main_checkpoint = self.resume_checkpoint | |
| ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, | |
| rate, model_name) | |
| if ema_checkpoint and model_name == 'ddpm': | |
| if dist_util.get_rank() == 0: | |
| if not Path(ema_checkpoint).exists(): | |
| logger.log( | |
| f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist" | |
| ) | |
| return | |
| logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") | |
| map_location = { | |
| 'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
| } # configure map_location properly | |
| state_dict = dist_util.load_state_dict( | |
| ema_checkpoint, map_location=map_location) | |
| model_ema_state_dict = model.state_dict() | |
| for k, v in state_dict.items(): | |
| if k in model_ema_state_dict.keys() and v.size( | |
| ) == model_ema_state_dict[k].size(): | |
| model_ema_state_dict[k] = v | |
| elif 'IN' in k and getattr(model, 'decomposed_IN', False): | |
| model_ema_state_dict[k.replace( | |
| 'IN', 'IN.IN')] = v # decomposed IN | |
| else: | |
| logger.log('ignore key: ', k, ": ", v.size()) | |
| ema_params = mp_trainer.state_dict_to_master_params( | |
| model_ema_state_dict) | |
| del state_dict | |
| # logger.log('ema mark 3, ', model_name, ) | |
| # ! debugging, remove to check which key fails. | |
| if dist_util.get_world_size() > 1: | |
| dist_util.sync_params(ema_params) | |
| # logger.log('ema mark 4, ', model_name, ) | |
| # del ema_params | |
| return ema_params | |
| def _load_optimizer_state(self): | |
| main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint | |
| opt_checkpoint = bf.join(bf.dirname(main_checkpoint), | |
| f"opt{self.resume_step:06}.pt") | |
| if bf.exists(opt_checkpoint): | |
| logger.log( | |
| f"loading optimizer state from checkpoint: {opt_checkpoint}") | |
| map_location = { | |
| 'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
| } # configure map_location properly | |
| state_dict = dist_util.load_state_dict(opt_checkpoint, | |
| map_location=map_location) | |
| self.opt.load_state_dict(state_dict) | |
| # self.opt.load_state_dict({k: v for k, v in state_dict.items() if k in self.opt.state_dict()}) | |
| del state_dict | |
| def run_loop(self, batch=None): | |
| while (not self.lr_anneal_steps | |
| or self.step + self.resume_step < self.lr_anneal_steps): | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| # batch, cond = next(self.data) | |
| # if batch is None: | |
| if isinstance(self.data, list): | |
| if self.step <= self.data[2]: | |
| batch = next(self.data[1]) | |
| else: | |
| batch = next(self.data[0]) | |
| else: | |
| batch = next(self.data) | |
| # batch = next(self.data) | |
| if self.novel_view_poses is None: | |
| self.novel_view_poses = th.roll(batch['c'], 1, 0).to( | |
| dist_util.dev()) # save for eval visualization use | |
| self.run_step(batch) | |
| if self.step % 1000 == 0: | |
| dist_util.synchronize() | |
| th.cuda.empty_cache() # avoid memory leak | |
| if self.step % self.log_interval == 0 and dist_util.get_rank( | |
| ) == 0: | |
| out = logger.dumpkvs() | |
| # * log to tensorboard | |
| for k, v in out.items(): | |
| self.writer.add_scalar(f'Loss/{k}', v, | |
| self.step + self.resume_step) | |
| if self.step % self.eval_interval == 0 and self.step != 0: | |
| # if self.step % self.eval_interval == 0 and (self.step + | |
| # self.resume_step) != 0: | |
| # if self.step % self.eval_interval == 0: # ! for debugging | |
| # if self.step % self.eval_interval == 0: | |
| if dist_util.get_rank() == 0: | |
| try: | |
| self.eval_loop() | |
| except Exception as e: | |
| logger.log(e) | |
| # self.eval_novelview_loop() | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| if self.step % self.save_interval == 0 and self.step != 0: | |
| self.save() | |
| dist_util.synchronize() | |
| # Run for a finite amount of time in integration tests. | |
| if os.environ.get("DIFFUSION_TRAINING_TEST", | |
| "") and self.step > 0: | |
| return | |
| self.step += 1 | |
| if self.step > self.iterations: | |
| logger.log('reached maximum iterations, exiting') | |
| # Save the last checkpoint if it wasn't already saved. | |
| if (self.step - | |
| 1) % self.save_interval != 0 and self.step != 1: | |
| self.save() | |
| exit() | |
| # Save the last checkpoint if it wasn't already saved. | |
| if (self.step - 1) % self.save_interval != 0 and self.step != 1: | |
| self.save() | |
| def eval_loop(self): | |
| raise NotImplementedError('') | |
| def run_step(self, batch, *args): | |
| self.forward_backward(batch) | |
| took_step = self.mp_trainer_rec.optimize(self.opt) | |
| if took_step: | |
| self._update_ema() | |
| self._anneal_lr() | |
| self.log_step() | |
| def forward_backward(self, batch, *args, **kwargs): | |
| # th.cuda.empty_cache() | |
| raise NotImplementedError('') | |
| def _update_ema(self): | |
| for rate, params in zip(self.ema_rate, self.ema_params): | |
| update_ema(params, self.mp_trainer_rec.master_params, rate=rate) | |
| def _anneal_lr(self): | |
| if not self.lr_anneal_steps: | |
| return | |
| frac_done = (self.step + self.resume_step) / self.lr_anneal_steps | |
| lr = self.lr * (1 - frac_done) | |
| for param_group in self.opt.param_groups: | |
| param_group["lr"] = lr | |
| def log_step(self): | |
| logger.logkv("step", self.step + self.resume_step) | |
| logger.logkv("samples", | |
| (self.step + self.resume_step + 1) * self.global_batch) | |
| def save(self): | |
| def save_checkpoint(rate, params): | |
| state_dict = self.mp_trainer_rec.master_params_to_state_dict( | |
| params) | |
| if dist_util.get_rank() == 0: | |
| logger.log(f"saving model {rate}...") | |
| if not rate: | |
| filename = f"model_rec{(self.step+self.resume_step):07d}.pt" | |
| else: | |
| filename = f"ema_{rate}_{(self.step+self.resume_step):07d}.pt" | |
| with bf.BlobFile(bf.join(get_blob_logdir(), filename), | |
| "wb") as f: | |
| th.save(state_dict, f) | |
| save_checkpoint( | |
| 0, self.mp_trainer_rec.master_params) # avoid OOM when saving ckpt | |
| for rate, params in zip(self.ema_rate, self.ema_params): | |
| save_checkpoint(rate, params) | |
| th.cuda.empty_cache() | |
| dist.barrier() | |
| class TrainLoop3DRec(TrainLoopBasic): | |
| def __init__( | |
| self, | |
| *, | |
| rec_model, | |
| loss_class, | |
| # diffusion, | |
| data, | |
| eval_data, | |
| batch_size, | |
| microbatch, | |
| lr, | |
| ema_rate, | |
| log_interval, | |
| eval_interval, | |
| save_interval, | |
| resume_checkpoint, | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| # schedule_sampler=None, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| iterations=10001, | |
| load_submodule_name='', | |
| ignore_resume_opt=False, | |
| model_name='rec', | |
| use_amp=False, | |
| compile=False, | |
| **kwargs): | |
| super().__init__(rec_model=rec_model, | |
| loss_class=loss_class, | |
| data=data, | |
| eval_data=eval_data, | |
| batch_size=batch_size, | |
| microbatch=microbatch, | |
| lr=lr, | |
| ema_rate=ema_rate, | |
| log_interval=log_interval, | |
| eval_interval=eval_interval, | |
| save_interval=save_interval, | |
| resume_checkpoint=resume_checkpoint, | |
| use_fp16=use_fp16, | |
| fp16_scale_growth=fp16_scale_growth, | |
| weight_decay=weight_decay, | |
| lr_anneal_steps=lr_anneal_steps, | |
| iterations=iterations, | |
| load_submodule_name=load_submodule_name, | |
| ignore_resume_opt=ignore_resume_opt, | |
| model_name=model_name, | |
| use_amp=use_amp, | |
| compile=compile, | |
| **kwargs) | |
| # self.rec_model = self.ddp_model | |
| # self._prepare_nvs_pose() # for eval novelview visualization | |
| self.triplane_scaling_divider = 1.0 | |
| self.latent_name = 'latent_normalized_2Ddiffusion' # normalized triplane latent | |
| self.render_latent_behaviour = 'decode_after_vae' # directly render using triplane operations | |
| th.cuda.empty_cache() | |
| def render_video_given_triplane(self, | |
| planes, | |
| rec_model, | |
| name_prefix='0', | |
| save_img=False, | |
| render_reference=None, | |
| save_mesh=False): | |
| planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments. | |
| # sr_w_code = getattr(self.ddp_rec_model.module.decoder, 'w_avg', None) | |
| # sr_w_code = None | |
| batch_size = planes.shape[0] | |
| # if sr_w_code is not None: | |
| # sr_w_code = sr_w_code.reshape(1, 1, | |
| # -1).repeat_interleave(batch_size, 0) | |
| # used during diffusion sampling inference | |
| # if not save_img: | |
| # ! mesh | |
| if planes.shape[1] == 16: # ffhq/car | |
| ddpm_latent = { | |
| self.latent_name: planes[:, :12], | |
| 'bg_plane': planes[:, 12:16], | |
| } | |
| else: | |
| ddpm_latent = { | |
| self.latent_name: planes, | |
| } | |
| ddpm_latent.update( | |
| rec_model(latent=ddpm_latent, | |
| behaviour='decode_after_vae_no_render')) | |
| # if export_mesh: | |
| # if True: | |
| if save_mesh: # ! tune marching cube grid size according to the vram size | |
| # mesh_size = 512 | |
| # mesh_size = 256 | |
| mesh_size = 192 | |
| mesh_thres = 10 # TODO, requires tuning | |
| import mcubes | |
| import trimesh | |
| dump_path = f'{logger.get_dir()}/mesh/' | |
| os.makedirs(dump_path, exist_ok=True) | |
| grid_out = rec_model( | |
| latent=ddpm_latent, | |
| grid_size=mesh_size, | |
| behaviour='triplane_decode_grid', | |
| ) | |
| vtx, faces = mcubes.marching_cubes( | |
| grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), | |
| mesh_thres) | |
| grid_scale = [rec_model.module.decoder.rendering_kwargs['sampler_bbox_min'], rec_model.module.decoder.rendering_kwargs['sampler_bbox_max']] | |
| vtx = (vtx / (mesh_size-1) * 2 - 1 ) * grid_scale[1] # normalize to g-buffer objav dataset scale | |
| # ! save normalized color to the vertex | |
| # vtx_tensor = th.tensor(vtx, dtype=th.float32, device=dist_util.dev()).unsqueeze(0) | |
| # vtx_colors = rec_model.module.decoder.forward_points(ddpm_latent['latent_after_vit'], vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1) | |
| # vtx_colors = (vtx_colors.clip(0,1) * 255).astype(np.uint8) | |
| # mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) | |
| mesh = trimesh.Trimesh(vertices=vtx, faces=faces) | |
| # mesh = trimesh.Trimesh( | |
| # vertices=vtx, | |
| # faces=faces, | |
| # ) | |
| mesh_dump_path = os.path.join(dump_path, f'{name_prefix}.ply') | |
| mesh.export(mesh_dump_path, 'ply') | |
| print(f"Mesh dumped to {dump_path}") | |
| del grid_out, mesh | |
| th.cuda.empty_cache() | |
| # return | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/triplane_{name_prefix}.mp4', | |
| mode='I', | |
| fps=15, | |
| codec='libx264') | |
| if planes.shape[1] == 16: # ffhq/car | |
| ddpm_latent = { | |
| self.latent_name: planes[:, :12], | |
| 'bg_plane': planes[:, 12:16], | |
| } | |
| else: | |
| ddpm_latent = { | |
| self.latent_name: planes, | |
| } | |
| ddpm_latent.update( | |
| rec_model(latent=ddpm_latent, | |
| behaviour='decode_after_vae_no_render')) | |
| # planes = planes.repeat_interleave(micro['c'].shape[0], 0) | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| # micro_batchsize = 2 | |
| # micro_batchsize = batch_size | |
| if render_reference is None: | |
| render_reference = self.eval_data # compat | |
| else: # use train_traj | |
| for key in ['ins', 'bbox', 'caption']: | |
| if key in render_reference: | |
| render_reference.pop(key) | |
| # render_reference.pop('bbox') | |
| # render_reference.pop('caption') | |
| # compat lst for enumerate | |
| render_reference = [{ | |
| k: v[idx:idx + 1] | |
| for k, v in render_reference.items() | |
| } for idx in range(render_reference['c'].shape[0])] | |
| # for i, batch in enumerate(tqdm(self.eval_data)): | |
| for i, batch in enumerate(tqdm(render_reference)): | |
| micro = { | |
| k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v | |
| for k, v in batch.items() | |
| } | |
| # micro = {'c': batch['c'].to(dist_util.dev()).repeat_interleave(batch_size, 0)} | |
| # all_pred = [] | |
| pred = rec_model( | |
| img=None, | |
| c=micro['c'], | |
| latent=ddpm_latent, | |
| # latent={ | |
| # # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None | |
| # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None | |
| # for k, v in ddpm_latent.items() | |
| # }, | |
| behaviour='triplane_dec') | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
| pred_depth.min()) | |
| # save viridis_r depth | |
| pred_depth = pred_depth.cpu()[0].permute(1, 2, 0).numpy() | |
| pred_depth = (plt.cm.viridis(pred_depth[..., 0])[..., :3]) * 2 - 1 | |
| pred_depth = th.from_numpy(pred_depth).to( | |
| pred['image_raw'].device).permute(2, 0, 1).unsqueeze(0) | |
| # st() | |
| # pred_depth = | |
| if 'image_sr' in pred: | |
| gen_img = pred['image_sr'] | |
| if pred['image_sr'].shape[-1] == 512: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), gen_img, | |
| self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| elif pred['image_sr'].shape[-1] == 128: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_128(pred['image_raw']), pred['image_sr'], | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| gen_img = pred['image_raw'] | |
| pred_vis = th.cat( | |
| [ | |
| gen_img, | |
| pred_depth | |
| ], | |
| dim=-1) # B, 3, H, W | |
| if save_img: | |
| for batch_idx in range(gen_img.shape[0]): | |
| sampled_img = Image.fromarray( | |
| (gen_img[batch_idx].permute(1, 2, 0).cpu().numpy() * | |
| 127.5 + 127.5).clip(0, 255).astype(np.uint8)) | |
| if sampled_img.size != (512, 512): | |
| sampled_img = sampled_img.resize( | |
| (128, 128), Image.HAMMING) # for shapenet | |
| sampled_img.save(logger.get_dir() + | |
| '/FID_Cals/{}_{}.png'.format( | |
| int(name_prefix) * batch_size + | |
| batch_idx, i)) | |
| # print('FID_Cals/{}_{}.png'.format(int(name_prefix)*batch_size+batch_idx, i)) | |
| vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| # if vis.shape[0] > 1: | |
| # vis = np.concatenate(np.split(vis, vis.shape[0], axis=0), | |
| # axis=-3) | |
| # if not save_img: | |
| for j in range(vis.shape[0] | |
| ): # ! currently only export one plane at a time | |
| video_out.append_data(vis[j]) | |
| # if not save_img: | |
| video_out.close() | |
| del video_out | |
| print('logged video to: ', | |
| f'{logger.get_dir()}/triplane_{name_prefix}.mp4') | |
| del vis, pred_vis, micro, pred, | |
| def _init_optim_groups(self, kwargs): | |
| if kwargs.get('decomposed', False): # AE | |
| optim_groups = [ | |
| # vit encoder | |
| { | |
| 'name': 'encoder', | |
| 'params': self.mp_trainer_rec.model.encoder.parameters(), | |
| 'lr': kwargs['encoder_lr'], | |
| 'weight_decay': kwargs['encoder_weight_decay'] | |
| }, | |
| # vit decoder backbone | |
| { | |
| 'name': | |
| 'decoder.vit_decoder', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.vit_decoder.parameters(), | |
| 'lr': | |
| kwargs['vit_decoder_lr'], | |
| 'weight_decay': | |
| kwargs['vit_decoder_wd'] | |
| }, | |
| # triplane decoder, may include bg synthesis network | |
| { | |
| 'name': | |
| 'decoder.triplane_decoder', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.triplane_decoder. | |
| parameters(), | |
| 'lr': | |
| kwargs['triplane_decoder_lr'], | |
| # 'weight_decay': self.weight_decay | |
| }, | |
| ] | |
| if self.mp_trainer_rec.model.decoder.superresolution is not None: | |
| optim_groups.append({ | |
| 'name': | |
| 'decoder.superresolution', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.superresolution. | |
| parameters(), | |
| 'lr': | |
| kwargs['super_resolution_lr'], | |
| }) | |
| if self.mp_trainer_rec.model.dim_up_mlp is not None: | |
| optim_groups.append({ | |
| 'name': | |
| 'dim_up_mlp', | |
| 'params': | |
| self.mp_trainer_rec.model.dim_up_mlp.parameters(), | |
| 'lr': | |
| kwargs['encoder_lr'], | |
| # 'weight_decay': | |
| # self.weight_decay | |
| }) | |
| # add 3D aware operators | |
| if self.mp_trainer_rec.model.decoder.decoder_pred_3d is not None: | |
| optim_groups.append({ | |
| 'name': | |
| 'decoder_pred_3d', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.decoder_pred_3d. | |
| parameters(), | |
| 'lr': | |
| kwargs['vit_decoder_lr'], | |
| 'weight_decay': | |
| kwargs['vit_decoder_wd'] | |
| }) | |
| if self.mp_trainer_rec.model.decoder.transformer_3D_blk is not None: | |
| optim_groups.append({ | |
| 'name': | |
| 'decoder_transformer_3D_blk', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.transformer_3D_blk. | |
| parameters(), | |
| 'lr': | |
| kwargs['vit_decoder_lr'], | |
| 'weight_decay': | |
| kwargs['vit_decoder_wd'] | |
| }) | |
| if self.mp_trainer_rec.model.decoder.logvar is not None: | |
| optim_groups.append({ | |
| 'name': | |
| 'decoder_logvar', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.logvar, | |
| 'lr': | |
| kwargs['vit_decoder_lr'], | |
| 'weight_decay': | |
| kwargs['vit_decoder_wd'] | |
| }) | |
| if self.mp_trainer_rec.model.decoder.decoder_pred is not None: | |
| optim_groups.append( | |
| # MLP triplane SR | |
| { | |
| 'name': | |
| 'decoder.decoder_pred', | |
| 'params': | |
| self.mp_trainer_rec.model.decoder.decoder_pred. | |
| parameters(), | |
| 'lr': | |
| kwargs['vit_decoder_lr'], | |
| # 'weight_decay': 0 | |
| 'weight_decay': | |
| kwargs['vit_decoder_wd'] | |
| }, ) | |
| if self.mp_trainer_rec.model.confnet is not None: | |
| optim_groups.append({ | |
| 'name': | |
| 'confnet', | |
| 'params': | |
| self.mp_trainer_rec.model.confnet.parameters(), | |
| 'lr': | |
| 1e-5, # as in unsup3d | |
| }) | |
| # self.opt = AdamW(optim_groups) | |
| if dist_util.get_rank() == 0: | |
| logger.log('using independent optimizer for each components') | |
| else: | |
| optim_groups = [ | |
| dict(name='mp_trainer.master_params', | |
| params=self.mp_trainer_rec.master_params, | |
| lr=self.lr, | |
| weight_decay=self.weight_decay) | |
| ] | |
| logger.log(optim_groups) | |
| return optim_groups | |
| # def eval_loop(self, c_list:list): | |
| def eval_novelview_loop(self): | |
| # novel view synthesis given evaluation camera trajectory | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| all_loss_dict = [] | |
| novel_view_micro = {} | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| # for i in range(0, 8, self.microbatch): | |
| # c = c_list[i].to(dist_util.dev()).reshape(1, -1) | |
| micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| if i == 0: | |
| novel_view_micro = { | |
| k: | |
| v[0:1].to(dist_util.dev()).repeat_interleave( | |
| micro['img'].shape[0], 0) | |
| if isinstance(v, th.Tensor) else v[0:1] | |
| for k, v in batch.items() | |
| } | |
| else: | |
| # if novel_view_micro['c'].shape[0] < micro['img'].shape[0]: | |
| novel_view_micro = { | |
| k: | |
| v[0:1].to(dist_util.dev()).repeat_interleave( | |
| micro['img'].shape[0], 0) | |
| for k, v in novel_view_micro.items() | |
| } | |
| pred = self.rec_model(img=novel_view_micro['img_to_encoder'], | |
| c=micro['c']) # pred: (B, 3, 64, 64) | |
| # target = { | |
| # 'img': micro['img'], | |
| # 'depth': micro['depth'], | |
| # 'depth_mask': micro['depth_mask'] | |
| # } | |
| # targe | |
| _, loss_dict = self.loss_class(pred, micro, test_mode=True) | |
| all_loss_dict.append(loss_dict) | |
| # ! move to other places, add tensorboard | |
| # pred_vis = th.cat([ | |
| # pred['image_raw'], | |
| # -pred['image_depth'].repeat_interleave(3, dim=1) | |
| # ], | |
| # dim=-1) | |
| # normalize depth | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
| pred_depth.min()) | |
| if 'image_sr' in pred: | |
| if pred['image_sr'].shape[-1] == 512: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), pred['image_sr'], | |
| self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| elif pred['image_sr'].shape[-1] == 256: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_256(pred['image_raw']), pred['image_sr'], | |
| self.pool_256(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred['image_sr']), | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| # pred_vis = th.cat([ | |
| # self.pool_64(micro['img']), pred['image_raw'], | |
| # pred_depth.repeat_interleave(3, dim=1) | |
| # ], | |
| # dim=-1) # B, 3, H, W | |
| pred_vis = th.cat([ | |
| self.pool_128(micro['img']), | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| for j in range(vis.shape[0]): | |
| video_out.append_data(vis[j]) | |
| video_out.close() | |
| val_scores_for_logging = calc_average_loss(all_loss_dict) | |
| with open(os.path.join(logger.get_dir(), 'scores_novelview.json'), | |
| 'a') as f: | |
| json.dump({'step': self.step, **val_scores_for_logging}, f) | |
| # * log to tensorboard | |
| for k, v in val_scores_for_logging.items(): | |
| self.writer.add_scalar(f'Eval/NovelView/{k}', v, | |
| self.step + self.resume_step) | |
| del video_out | |
| # del pred_vis | |
| # del pred | |
| th.cuda.empty_cache() | |
| # @th.no_grad() | |
| # def eval_loop(self, c_list:list): | |
| def eval_loop(self): | |
| # novel view synthesis given evaluation camera trajectory | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| all_loss_dict = [] | |
| self.rec_model.eval() | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| # for i in range(0, 8, self.microbatch): | |
| # c = c_list[i].to(dist_util.dev()).reshape(1, -1) | |
| micro = { | |
| k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v | |
| for k, v in batch.items() | |
| } | |
| pred = self.rec_model(img=micro['img_to_encoder'], | |
| c=micro['c']) # pred: (B, 3, 64, 64) | |
| # target = { | |
| # 'img': micro['img'], | |
| # 'depth': micro['depth'], | |
| # 'depth_mask': micro['depth_mask'] | |
| # } | |
| # if last_batch or not self.use_ddp: | |
| # loss, loss_dict = self.loss_class(pred, target) | |
| # else: | |
| # with self.ddp_model.no_sync(): # type: ignore | |
| _, loss_dict = self.loss_class(pred, micro, test_mode=True) | |
| all_loss_dict.append(loss_dict) | |
| # ! move to other places, add tensorboard | |
| # gt_vis = th.cat([micro['img'], micro['img']], dim=-1) # TODO, fail to load depth. range [0, 1] | |
| # pred_vis = th.cat([ | |
| # pred['image_raw'], | |
| # -pred['image_depth'].repeat_interleave(3, dim=1) | |
| # ], | |
| # dim=-1) | |
| # vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(1,2,0).cpu().numpy() # ! pred in range[-1, 1] | |
| # normalize depth | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
| pred_depth.min()) | |
| if 'image_sr' in pred: | |
| if pred['image_sr'].shape[-1] == 512: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), pred['image_sr'], | |
| self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| elif pred['image_sr'].shape[-1] == 256: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_256(pred['image_raw']), pred['image_sr'], | |
| self.pool_256(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred['image_sr']), | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| self.pool_128(micro['img']), | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| for j in range(vis.shape[0]): | |
| video_out.append_data(vis[j]) | |
| video_out.close() | |
| val_scores_for_logging = calc_average_loss(all_loss_dict) | |
| with open(os.path.join(logger.get_dir(), 'scores.json'), 'a') as f: | |
| json.dump({'step': self.step, **val_scores_for_logging}, f) | |
| # * log to tensorboard | |
| for k, v in val_scores_for_logging.items(): | |
| self.writer.add_scalar(f'Eval/Rec/{k}', v, | |
| self.step + self.resume_step) | |
| th.cuda.empty_cache() | |
| # if 'SuperresolutionHybrid8X' in self.rendering_kwargs: # ffhq/afhq | |
| # self.eval_novelview_loop_trajectory() | |
| # else: | |
| self.eval_novelview_loop() | |
| self.rec_model.train() | |
| def eval_novelview_loop_trajectory(self): | |
| # novel view synthesis given evaluation camera trajectory | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}_batch_{i}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| for idx, c in enumerate(self.all_nvs_params): | |
| pred = self.rec_model(img=micro['img_to_encoder'], | |
| c=c.unsqueeze(0).repeat_interleave( | |
| micro['img'].shape[0], | |
| 0)) # pred: (B, 3, 64, 64) | |
| # c=micro['c']) # pred: (B, 3, 64, 64) | |
| # normalize depth | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / ( | |
| pred_depth.max() - pred_depth.min()) | |
| if 'image_sr' in pred: | |
| if pred['image_sr'].shape[-1] == 512: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), pred['image_sr'], | |
| self.pool_512(pred_depth).repeat_interleave(3, | |
| dim=1) | |
| ], | |
| dim=-1) | |
| elif pred['image_sr'].shape[-1] == 256: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_256(pred['image_raw']), pred['image_sr'], | |
| self.pool_256(pred_depth).repeat_interleave(3, | |
| dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred['image_sr']), | |
| self.pool_128(pred_depth).repeat_interleave(3, | |
| dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| # st() | |
| pred_vis = th.cat([ | |
| self.pool_128(micro['img']), | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| # ! cooncat h dim | |
| pred_vis = pred_vis.permute(0, 2, 3, 1).flatten(0, | |
| 1) # H W 3 | |
| # vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| # vis = pred_vis.permute(1,2,0).cpu().numpy() | |
| vis = pred_vis.cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| # for j in range(vis.shape[0]): | |
| # video_out.append_data(vis[j]) | |
| video_out.append_data(vis) | |
| video_out.close() | |
| th.cuda.empty_cache() | |
| def _prepare_nvs_pose(self): | |
| device = dist_util.dev() | |
| fov_deg = 18.837 # for ffhq/afhq | |
| intrinsics = FOV_to_intrinsics(fov_deg, device=device) | |
| all_nvs_params = [] | |
| pitch_range = 0.25 | |
| yaw_range = 0.35 | |
| num_keyframes = 10 # how many nv poses to sample from | |
| w_frames = 1 | |
| cam_pivot = th.Tensor( | |
| self.rendering_kwargs.get('avg_camera_pivot')).to(device) | |
| cam_radius = self.rendering_kwargs.get('avg_camera_radius') | |
| for frame_idx in range(num_keyframes): | |
| cam2world_pose = LookAtPoseSampler.sample( | |
| 3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_idx / | |
| (num_keyframes * w_frames)), | |
| 3.14 / 2 - 0.05 + | |
| pitch_range * np.cos(2 * 3.14 * frame_idx / | |
| (num_keyframes * w_frames)), | |
| cam_pivot, | |
| radius=cam_radius, | |
| device=device) | |
| camera_params = th.cat( | |
| [cam2world_pose.reshape(-1, 16), | |
| intrinsics.reshape(-1, 9)], 1) | |
| all_nvs_params.append(camera_params) | |
| self.all_nvs_params = th.cat(all_nvs_params, 0) | |
| def forward_backward(self, batch, *args, **kwargs): | |
| # th.cuda.empty_cache() | |
| self.mp_trainer_rec.zero_grad() | |
| batch_size = batch['img_to_encoder'].shape[0] | |
| for i in range(0, batch_size, self.microbatch): | |
| micro = { | |
| k: v[i:i + self.microbatch].to(dist_util.dev()) | |
| for k, v in batch.items() | |
| } | |
| last_batch = (i + self.microbatch) >= batch_size | |
| # wrap forward within amp | |
| with th.autocast(device_type='cuda', | |
| dtype=th.float16, | |
| enabled=self.mp_trainer_rec.use_amp): | |
| pred = self.rec_model(img=micro['img_to_encoder'], | |
| c=micro['c']) # pred: (B, 3, 64, 64) | |
| target = micro | |
| # ! only enable in ffhq dataset | |
| conf_sigma_percl = None | |
| conf_sigma_percl_flip = None | |
| if 'conf_sigma' in pred: | |
| # all_conf_sigma_l1, all_conf_sigma_percl = pred['conf_sigma'] | |
| # all_conf_sigma_l1 = pred['conf_sigma'] | |
| all_conf_sigma_l1 = th.nn.functional.interpolate( | |
| pred['conf_sigma'], | |
| size=pred['image_raw'].shape[-2:], | |
| mode='bilinear' | |
| ) # dynamically resize to target img size | |
| conf_sigma_l1 = all_conf_sigma_l1[:, :1] | |
| conf_sigma_l1_flip = all_conf_sigma_l1[:, 1:] | |
| # conf_sigma_percl = all_conf_sigma_percl[:,:1] | |
| # conf_sigma_percl_flip = all_conf_sigma_percl[:,1:] | |
| else: | |
| conf_sigma = None | |
| conf_sigma_l1 = None | |
| conf_sigma_l1_flip = None | |
| with self.rec_model.no_sync(): # type: ignore | |
| loss, loss_dict, fg_mask = self.loss_class( | |
| pred, | |
| target, | |
| step=self.step + self.resume_step, | |
| test_mode=False, | |
| return_fg_mask=True, | |
| conf_sigma_l1=conf_sigma_l1, | |
| conf_sigma_percl=conf_sigma_percl) | |
| if self.loss_class.opt.symmetry_loss: | |
| loss_dict['conf_sigma_log'] = conf_sigma_l1.log() | |
| pose, intrinsics = micro['c'][:, :16].reshape( | |
| -1, 4, 4), micro['c'][:, 16:] | |
| flipped_pose = flip_yaw(pose) | |
| mirror_c = th.cat( | |
| [flipped_pose.reshape(-1, 16), intrinsics], -1) | |
| nvs_pred = self.rec_model(latent={ | |
| k: v | |
| for k, v in pred.items() if 'latent' in k | |
| }, | |
| c=mirror_c, | |
| behaviour='triplane_dec', | |
| return_raw_only=True) | |
| # concat data for supervision | |
| nvs_gt = { | |
| k: th.flip(target[k], [-1]) | |
| for k in | |
| ['img'] # fliplr leads to wrong color; B 3 H W shape | |
| } | |
| flipped_fg_mask = th.flip(fg_mask, [-1]) | |
| # if 'conf_sigma' in pred: | |
| # conf_sigma = th.flip(pred['conf_sigma'], [-1]) | |
| # conf_sigma = th.nn.AdaptiveAvgPool2d(fg_mask.shape[-2:])(conf_sigma) # dynamically resize to target img size | |
| # else: | |
| # conf_sigma=None | |
| with self.rec_model.no_sync(): # type: ignore | |
| loss_symm, loss_dict_symm = self.loss_class.calc_2d_rec_loss( | |
| nvs_pred['image_raw'], | |
| nvs_gt['img'], | |
| flipped_fg_mask, | |
| # test_mode=True, | |
| test_mode=False, | |
| step=self.step + self.resume_step, | |
| # conf_sigma=conf_sigma, | |
| conf_sigma_l1=conf_sigma_l1_flip, | |
| conf_sigma_percl=conf_sigma_percl_flip) | |
| # ) | |
| loss += (loss_symm * 1.0) # as in unsup3d | |
| # loss += (loss_symm * 0.5) # as in unsup3d | |
| # loss += (loss_symm * 0.01) # as in unsup3d | |
| # if conf_sigma is not None: | |
| # loss += th.nn.functional.mse_loss(conf_sigma, flipped_fg_mask) * 0.001 # a log that regularizes all confidence to 1 | |
| for k, v in loss_dict_symm.items(): | |
| loss_dict[f'{k}_symm'] = v | |
| loss_dict[ | |
| 'flip_conf_sigma_log'] = conf_sigma_l1_flip.log() | |
| # ! add density-reg in eg3d, tv-loss | |
| if self.loss_class.opt.density_reg > 0 and self.step % self.loss_class.opt.density_reg_every == 0: | |
| initial_coordinates = th.rand( | |
| (batch_size, 1000, 3), | |
| device=dist_util.dev()) * 2 - 1 # [-1, 1] | |
| perturbed_coordinates = initial_coordinates + th.randn_like( | |
| initial_coordinates | |
| ) * self.loss_class.opt.density_reg_p_dist | |
| all_coordinates = th.cat( | |
| [initial_coordinates, perturbed_coordinates], dim=1) | |
| sigma = self.rec_model( | |
| latent=pred['latent'], | |
| coordinates=all_coordinates, | |
| directions=th.randn_like(all_coordinates), | |
| behaviour='triplane_renderer', | |
| )['sigma'] | |
| sigma_initial = sigma[:, :sigma.shape[1] // 2] | |
| sigma_perturbed = sigma[:, sigma.shape[1] // 2:] | |
| TVloss = th.nn.functional.l1_loss( | |
| sigma_initial, | |
| sigma_perturbed) * self.loss_class.opt.density_reg | |
| loss_dict.update(dict(tv_loss=TVloss)) | |
| loss += TVloss | |
| self.mp_trainer_rec.backward(loss) | |
| log_rec3d_loss_dict(loss_dict) | |
| # for name, p in self.rec_model.named_parameters(): | |
| # if p.grad is None: | |
| # logger.log(f"found rec unused param: {name}") | |
| if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
| with th.no_grad(): | |
| # gt_vis = th.cat([batch['img'], batch['depth']], dim=-1) | |
| def norm_depth(pred_depth): # to [-1,1] | |
| # pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / ( | |
| pred_depth.max() - pred_depth.min()) | |
| return -(pred_depth * 2 - 1) | |
| pred_img = pred['image_raw'] | |
| gt_img = micro['img'] | |
| # infer novel view also | |
| if self.loss_class.opt.symmetry_loss: | |
| pred_nv_img = nvs_pred | |
| else: | |
| pred_nv_img = self.rec_model( | |
| img=micro['img_to_encoder'], | |
| c=self.novel_view_poses) # pred: (B, 3, 64, 64) | |
| # if 'depth' in micro: | |
| gt_depth = micro['depth'] | |
| if gt_depth.ndim == 3: | |
| gt_depth = gt_depth.unsqueeze(1) | |
| gt_depth = norm_depth(gt_depth) | |
| # gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
| # gt_depth.min()) | |
| # if True: | |
| fg_mask = pred['image_mask'] * 2 - 1 # 0-1 | |
| nv_fg_mask = pred_nv_img['image_mask'] * 2 - 1 # 0-1 | |
| if 'image_depth' in pred: | |
| pred_depth = norm_depth(pred['image_depth']) | |
| pred_nv_depth = norm_depth(pred_nv_img['image_depth']) | |
| else: | |
| pred_depth = th.zeros_like(gt_depth) | |
| pred_nv_depth = th.zeros_like(gt_depth) | |
| if 'image_sr' in pred: | |
| if pred['image_sr'].shape[-1] == 512: | |
| pred_img = th.cat( | |
| [self.pool_512(pred_img), pred['image_sr']], | |
| dim=-1) | |
| gt_img = th.cat( | |
| [self.pool_512(micro['img']), micro['img_sr']], | |
| dim=-1) | |
| pred_depth = self.pool_512(pred_depth) | |
| gt_depth = self.pool_512(gt_depth) | |
| elif pred['image_sr'].shape[-1] == 256: | |
| pred_img = th.cat( | |
| [self.pool_256(pred_img), pred['image_sr']], | |
| dim=-1) | |
| gt_img = th.cat( | |
| [self.pool_256(micro['img']), micro['img_sr']], | |
| dim=-1) | |
| pred_depth = self.pool_256(pred_depth) | |
| gt_depth = self.pool_256(gt_depth) | |
| else: | |
| pred_img = th.cat( | |
| [self.pool_128(pred_img), pred['image_sr']], | |
| dim=-1) | |
| gt_img = th.cat( | |
| [self.pool_128(micro['img']), micro['img_sr']], | |
| dim=-1) | |
| gt_depth = self.pool_128(gt_depth) | |
| pred_depth = self.pool_128(pred_depth) | |
| else: | |
| gt_img = self.pool_128(gt_img) | |
| gt_depth = self.pool_128(gt_depth) | |
| pred_vis = th.cat([ | |
| pred_img, | |
| pred_depth.repeat_interleave(3, dim=1), | |
| fg_mask.repeat_interleave(3, dim=1), | |
| ], | |
| dim=-1) # B, 3, H, W | |
| if 'conf_sigma' in pred: | |
| conf_sigma_l1 = (1 / (conf_sigma_l1 + 1e-7) | |
| ).repeat_interleave(3, dim=1) * 2 - 1 | |
| pred_vis = th.cat([ | |
| pred_vis, | |
| conf_sigma_l1, | |
| ], dim=-1) # B, 3, H, W | |
| pred_vis_nv = th.cat([ | |
| pred_nv_img['image_raw'], | |
| pred_nv_depth.repeat_interleave(3, dim=1), | |
| nv_fg_mask.repeat_interleave(3, dim=1), | |
| ], | |
| dim=-1) # B, 3, H, W | |
| if 'conf_sigma' in pred: | |
| # conf_sigma_for_vis = (1/conf_sigma).repeat_interleave(3, dim=1) | |
| # conf_sigma_for_vis = (conf_sigma_for_vis / conf_sigma_for_vis.max() ) * 2 - 1 # normalize to [-1,1] | |
| conf_sigma_for_vis_flip = ( | |
| 1 / (conf_sigma_l1_flip + 1e-7)).repeat_interleave( | |
| 3, dim=1) * 2 - 1 | |
| pred_vis_nv = th.cat( | |
| [ | |
| pred_vis_nv, | |
| conf_sigma_for_vis_flip, | |
| # th.cat([conf_sigma_for_vis, flipped_fg_mask*2-1], -1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| pred_vis = th.cat([pred_vis, pred_vis_nv], | |
| dim=-2) # cat in H dim | |
| gt_vis = th.cat( | |
| [ | |
| gt_img, | |
| gt_depth.repeat_interleave(3, dim=1), | |
| th.zeros_like(gt_img) | |
| ], | |
| dim=-1) # TODO, fail to load depth. range [0, 1] | |
| if 'conf_sigma' in pred: | |
| gt_vis = th.cat([gt_vis, fg_mask], | |
| dim=-1) # placeholder | |
| # vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
| # st() | |
| vis = th.cat([gt_vis, pred_vis], dim=-2) | |
| # .permute( | |
| # 0, 2, 3, 1).cpu() | |
| vis_tensor = torchvision.utils.make_grid( | |
| vis, nrow=vis.shape[-1] // 64) # HWC | |
| torchvision.utils.save_image( | |
| vis_tensor, | |
| f'{logger.get_dir()}/{self.step+self.resume_step}.jpg', | |
| value_range=(-1, 1), | |
| normalize=True) | |
| # vis = vis.numpy() * 127.5 + 127.5 | |
| # vis = vis.clip(0, 255).astype(np.uint8) | |
| # Image.fromarray(vis).save( | |
| # f'{logger.get_dir()}/{self.step+self.resume_step}.jpg') | |
| logger.log( | |
| 'log vis to: ', | |
| f'{logger.get_dir()}/{self.step+self.resume_step}.jpg') | |
| # self.writer.add_image(f'images', | |
| # vis, | |
| # self.step + self.resume_step, | |
| # dataformats='HWC') | |
| return pred | |
| class TrainLoop3DTriplaneRec(TrainLoop3DRec): | |
| def __init__(self, | |
| *, | |
| rec_model, | |
| loss_class, | |
| data, | |
| eval_data, | |
| batch_size, | |
| microbatch, | |
| lr, | |
| ema_rate, | |
| log_interval, | |
| eval_interval, | |
| save_interval, | |
| resume_checkpoint, | |
| use_fp16=False, | |
| fp16_scale_growth=0.001, | |
| weight_decay=0, | |
| lr_anneal_steps=0, | |
| iterations=10001, | |
| load_submodule_name='', | |
| ignore_resume_opt=False, | |
| model_name='rec', | |
| use_amp=False, | |
| compile=False, | |
| **kwargs): | |
| super().__init__(rec_model=rec_model, | |
| loss_class=loss_class, | |
| data=data, | |
| eval_data=eval_data, | |
| batch_size=batch_size, | |
| microbatch=microbatch, | |
| lr=lr, | |
| ema_rate=ema_rate, | |
| log_interval=log_interval, | |
| eval_interval=eval_interval, | |
| save_interval=save_interval, | |
| resume_checkpoint=resume_checkpoint, | |
| use_fp16=use_fp16, | |
| fp16_scale_growth=fp16_scale_growth, | |
| weight_decay=weight_decay, | |
| lr_anneal_steps=lr_anneal_steps, | |
| iterations=iterations, | |
| load_submodule_name=load_submodule_name, | |
| ignore_resume_opt=ignore_resume_opt, | |
| model_name=model_name, | |
| use_amp=use_amp, | |
| compile=compile, | |
| **kwargs) | |
| def eval_loop(self): | |
| # novel view synthesis given evaluation camera trajectory | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| all_loss_dict = [] | |
| self.rec_model.eval() | |
| device = dist_util.dev() | |
| # to get intrinsics | |
| demo_pose = next(self.data) | |
| intrinsics = demo_pose['c'][0][16:25].to(device) | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4', | |
| mode='I', | |
| fps=24, | |
| bitrate='10M', | |
| codec='libx264') | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| # for i, batch in enumerate(tqdm(self.eval_data)): | |
| cam_pivot = th.tensor([0, 0, 0], device=dist_util.dev()) | |
| cam_radius = 1.8 | |
| pitch_range = 0.45 | |
| yaw_range = 3.14 # 0.35 | |
| frames = 72 | |
| # TODO, use PanoHead trajectory | |
| # for frame_idx in range(frames): | |
| for pose_idx, (angle_y, angle_p) in enumerate( | |
| # zip(np.linspace(-0.4, 0.4, 72), [-0.2] * 72)): | |
| # zip(np.linspace(-1.57, 1.57, 72), [-1.57] * 72)): | |
| # zip(np.linspace(0,3.14, 72), [0] * 72)): # check canonical pose | |
| zip([0.2] * 72, np.linspace(-3.14, 3.14, 72))): | |
| # cam2world_pose = LookAtPoseSampler.sample(3.14/2 + yaw_range * np.cos(2 * 3.14 * frame_idx / (frames)), | |
| # 3.14/2 -0.05 + pitch_range * np.sin(2 * 3.14 * frame_idx / (frames)), | |
| # cam_pivot, | |
| # radius=cam_radius, device=device) | |
| cam2world_pose = LookAtPoseSampler.sample( | |
| np.pi / 2 + angle_y, | |
| np.pi / 2 + angle_p, | |
| # angle_p, | |
| cam_pivot, | |
| # horizontal_stddev=0.1, # 0.25 | |
| # vertical_stddev=0.125, # 0.35, | |
| radius=cam_radius, | |
| device=device) | |
| camera_params = th.cat( | |
| [cam2world_pose.reshape(-1, 16), | |
| intrinsics.reshape(-1, 9)], 1).to(dist_util.dev()) | |
| # micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| micro = {'c': camera_params} | |
| pred = self.rec_model(c=micro['c']) | |
| # normalize depth | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
| pred_depth.min()) | |
| pred_vis = th.cat([ | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| for j in range(vis.shape[0]): | |
| video_out.append_data(vis[j]) | |
| video_out.close() | |
| self.rec_model.train() | |
| class TrainLoop3DRecTrajVis(TrainLoop3DRec): | |
| def __init__(self, | |
| *, | |
| rec_model, | |
| loss_class, | |
| data, | |
| eval_data, | |
| batch_size, | |
| microbatch, | |
| lr, | |
| ema_rate, | |
| log_interval, | |
| eval_interval, | |
| save_interval, | |
| resume_checkpoint, | |
| use_fp16=False, | |
| fp16_scale_growth=0.001, | |
| weight_decay=0, | |
| lr_anneal_steps=0, | |
| iterations=10001, | |
| load_submodule_name='', | |
| ignore_resume_opt=False, | |
| model_name='rec', | |
| use_amp=False, | |
| **kwargs): | |
| super().__init__(rec_model=rec_model, | |
| loss_class=loss_class, | |
| data=data, | |
| eval_data=eval_data, | |
| batch_size=batch_size, | |
| microbatch=microbatch, | |
| lr=lr, | |
| ema_rate=ema_rate, | |
| log_interval=log_interval, | |
| eval_interval=eval_interval, | |
| save_interval=save_interval, | |
| resume_checkpoint=resume_checkpoint, | |
| use_fp16=use_fp16, | |
| fp16_scale_growth=fp16_scale_growth, | |
| weight_decay=weight_decay, | |
| lr_anneal_steps=lr_anneal_steps, | |
| iterations=iterations, | |
| load_submodule_name=load_submodule_name, | |
| ignore_resume_opt=ignore_resume_opt, | |
| model_name=model_name, | |
| use_amp=use_amp, | |
| **kwargs) | |
| self.rendering_kwargs = self.rec_model.module.decoder.triplane_decoder.rendering_kwargs # type: ignore | |
| self._prepare_nvs_pose() # for eval novelview visualization | |
| def eval_novelview_loop(self): | |
| # novel view synthesis given evaluation camera trajectory | |
| # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
| for i, batch in enumerate(tqdm(self.eval_data)): | |
| micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
| video_out = imageio.get_writer( | |
| f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}_batch_{i}.mp4', | |
| mode='I', | |
| fps=60, | |
| codec='libx264') | |
| for idx, c in enumerate(self.all_nvs_params): | |
| pred = self.rec_model(img=micro['img_to_encoder'], | |
| c=c.unsqueeze(0).repeat_interleave( | |
| micro['img'].shape[0], | |
| 0)) # pred: (B, 3, 64, 64) | |
| # c=micro['c']) # pred: (B, 3, 64, 64) | |
| # normalize depth | |
| # if True: | |
| pred_depth = pred['image_depth'] | |
| pred_depth = (pred_depth - pred_depth.min()) / ( | |
| pred_depth.max() - pred_depth.min()) | |
| if 'image_sr' in pred: | |
| if pred['image_sr'].shape[-1] == 512: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_512(pred['image_raw']), pred['image_sr'], | |
| self.pool_512(pred_depth).repeat_interleave(3, | |
| dim=1) | |
| ], | |
| dim=-1) | |
| elif pred['image_sr'].shape[-1] == 256: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_256(pred['image_raw']), pred['image_sr'], | |
| self.pool_256(pred_depth).repeat_interleave(3, | |
| dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| pred_vis = th.cat([ | |
| micro['img_sr'], | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred['image_sr']), | |
| self.pool_128(pred_depth).repeat_interleave(3, | |
| dim=1) | |
| ], | |
| dim=-1) | |
| else: | |
| # st() | |
| pred_vis = th.cat([ | |
| self.pool_128(micro['img']), | |
| self.pool_128(pred['image_raw']), | |
| self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
| ], | |
| dim=-1) # B, 3, H, W | |
| # ! cooncat h dim | |
| pred_vis = pred_vis.permute(0, 2, 3, 1).flatten(0, | |
| 1) # H W 3 | |
| # vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
| # vis = pred_vis.permute(1,2,0).cpu().numpy() | |
| vis = pred_vis.cpu().numpy() | |
| vis = vis * 127.5 + 127.5 | |
| vis = vis.clip(0, 255).astype(np.uint8) | |
| # for j in range(vis.shape[0]): | |
| # video_out.append_data(vis[j]) | |
| video_out.append_data(vis) | |
| video_out.close() | |
| th.cuda.empty_cache() | |
| def _prepare_nvs_pose(self): | |
| device = dist_util.dev() | |
| fov_deg = 18.837 # for ffhq/afhq | |
| intrinsics = FOV_to_intrinsics(fov_deg, device=device) | |
| all_nvs_params = [] | |
| pitch_range = 0.25 | |
| yaw_range = 0.35 | |
| num_keyframes = 10 # how many nv poses to sample from | |
| w_frames = 1 | |
| cam_pivot = th.Tensor( | |
| self.rendering_kwargs.get('avg_camera_pivot')).to(device) | |
| cam_radius = self.rendering_kwargs.get('avg_camera_radius') | |
| for frame_idx in range(num_keyframes): | |
| cam2world_pose = LookAtPoseSampler.sample( | |
| 3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_idx / | |
| (num_keyframes * w_frames)), | |
| 3.14 / 2 - 0.05 + | |
| pitch_range * np.cos(2 * 3.14 * frame_idx / | |
| (num_keyframes * w_frames)), | |
| cam_pivot, | |
| radius=cam_radius, | |
| device=device) | |
| camera_params = th.cat( | |
| [cam2world_pose.reshape(-1, 16), | |
| intrinsics.reshape(-1, 9)], 1) | |
| all_nvs_params.append(camera_params) | |
| self.all_nvs_params = th.cat(all_nvs_params, 0) | |