Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Train a diffusion model on images. | |
| """ | |
| import json | |
| import sys | |
| import os | |
| sys.path.append('.') | |
| import torch.distributed as dist | |
| import traceback | |
| import torch as th | |
| import torch.multiprocessing as mp | |
| import numpy as np | |
| import argparse | |
| import dnnlib | |
| from dnnlib.util import EasyDict, InfiniteSampler | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.script_util import ( | |
| args_to_dict, | |
| add_dict_to_argparser, | |
| ) | |
| # from nsr.train_util import TrainLoop3DRec as TrainLoop | |
| import nsr | |
| from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default | |
| from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
| from nsr.losses.builder import E3DGELossClass | |
| from torch.utils.data import Subset | |
| from datasets.eg3d_dataset import init_dataset_kwargs | |
| from utils.torch_utils import legacy, misc | |
| from pdb import set_trace as st | |
| import warnings | |
| warnings.filterwarnings("ignore", category=UserWarning) | |
| # th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 | |
| SEED = 0 | |
| def training_loop(args): | |
| # def training_loop(args): | |
| dist_util.setup_dist(args) | |
| # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
| print(f"{args.local_rank=} init complete") | |
| th.cuda.set_device(args.local_rank) | |
| th.cuda.empty_cache() | |
| th.cuda.manual_seed_all(SEED) | |
| np.random.seed(SEED) | |
| # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
| logger.configure(dir=args.logdir) | |
| logger.log("creating encoder and NSR decoder...") | |
| # device = dist_util.dev() | |
| device = th.device("cuda", args.local_rank) | |
| # shared eg3d opts | |
| opts = eg3d_options_default() | |
| # if args.sr_training: | |
| # args.sr_kwargs = dnnlib.EasyDict( | |
| # channel_base=opts.cbase, | |
| # channel_max=opts.cmax, | |
| # fused_modconv_default='inference_only', | |
| # use_noise=True | |
| # ) # ! close noise injection? since noise_mode='none' in eg3d | |
| logger.log("creating data loader...") | |
| # data = load_data( | |
| # if args.overfitting: | |
| # data = load_memory_data( | |
| # file_path=args.data_dir, | |
| # batch_size=args.batch_size, | |
| # reso=args.image_size, | |
| # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # num_workers=args.num_workers, | |
| # # load_depth=args.depth_lambda > 0 | |
| # load_depth=True # for evaluation | |
| # ) | |
| # else: | |
| # data = load_data( | |
| # dataset_size=args.dataset_size, | |
| # file_path=args.data_dir, | |
| # batch_size=args.batch_size, | |
| # reso=args.image_size, | |
| # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # num_workers=args.num_workers, | |
| # load_depth=True, | |
| # preprocess=auto_encoder.preprocess # clip | |
| # # load_depth=True # for evaluation | |
| # ) | |
| # eval_data = load_eval_data( | |
| # file_path=args.eval_data_dir, | |
| # batch_size=args.eval_batch_size, | |
| # reso=args.image_size, | |
| # reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| # num_workers=2, | |
| # load_depth=True, # for evaluation | |
| # preprocess=auto_encoder.preprocess) | |
| # ! load pre-trained SR in G | |
| common_kwargs = dict(c_dim=25, img_resolution=512, img_channels=3) | |
| G_kwargs = EasyDict(class_name=None, | |
| z_dim=512, | |
| w_dim=512, | |
| mapping_kwargs=EasyDict()) | |
| G_kwargs.channel_base = opts.cbase | |
| G_kwargs.channel_max = opts.cmax | |
| G_kwargs.mapping_kwargs.num_layers = opts.map_depth | |
| G_kwargs.class_name = opts.g_class_name | |
| G_kwargs.fused_modconv_default = 'inference_only' # Speed up training by using regular convolutions instead of grouped convolutions. | |
| G_kwargs.rendering_kwargs = args.rendering_kwargs | |
| G_kwargs.num_fp16_res = 0 | |
| G_kwargs.sr_num_fp16_res = 4 | |
| G_kwargs.sr_kwargs = EasyDict(channel_base=opts.cbase, | |
| channel_max=opts.cmax, | |
| fused_modconv_default='inference_only', | |
| use_noise=True) # ! close noise injection? since noise_mode='none' in eg3d | |
| G_kwargs.num_fp16_res = opts.g_num_fp16_res | |
| G_kwargs.conv_clamp = 256 if opts.g_num_fp16_res > 0 else None | |
| # creating G | |
| resume_data = th.load(args.resume_checkpoint_EG3D, map_location='cuda:{}'.format(args.local_rank)) | |
| G_ema = dnnlib.util.construct_class_by_name( | |
| **G_kwargs, **common_kwargs).train().requires_grad_(False).to( | |
| dist_util.dev()) # subclass of th.nn.Module | |
| for name, module in [ | |
| ('G_ema', G_ema), | |
| # ('D', D), | |
| ]: | |
| misc.copy_params_and_buffers( | |
| resume_data[name], # type: ignore | |
| module, | |
| require_all=True, | |
| # load_except=d_load_except if name == 'D' else [], | |
| ) | |
| G_ema.requires_grad_(False) | |
| G_ema.eval() | |
| if args.sr_training: | |
| args.sr_kwargs = G_kwargs.sr_kwargs # uncomment if needs to train with SR module | |
| auto_encoder = create_3DAE_model( | |
| **args_to_dict(args, | |
| encoder_and_nsr_defaults().keys())) | |
| auto_encoder.to(device) | |
| auto_encoder.train() | |
| # * clone G_ema.decoder to auto_encoder triplane | |
| logger.log("AE triplane decoder reuses G_ema decoder...") | |
| auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg) | |
| auto_encoder.decoder.triplane_decoder.decoder.load_state_dict( # type: ignore | |
| G_ema.decoder.state_dict()) # type: ignore | |
| # set grad=False in this manner suppresses the DDP forward no grad error. | |
| for param in auto_encoder.decoder.triplane_decoder.decoder.parameters(): # type: ignore | |
| param.requires_grad_(False) | |
| if args.sr_training: | |
| logger.log("AE triplane decoder reuses G_ema SR module...") | |
| auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore | |
| G_ema.superresolution.state_dict()) # type: ignore | |
| # set grad=False in this manner suppresses the DDP forward no grad error. | |
| for param in auto_encoder.decoder.triplane_decoder.superresolution.parameters(): # type: ignore | |
| param.requires_grad_(False) | |
| del resume_data, G_ema | |
| th.cuda.empty_cache() | |
| auto_encoder.to(dist_util.dev()) | |
| auto_encoder.train() | |
| # ! load FFHQ/AFHQ | |
| # Training set. | |
| # training_set_kwargs, dataset_name = init_dataset_kwargs(data=args.data_dir, class_name='datasets.eg3d_dataset.ImageFolderDatasetPose') # only load pose here | |
| training_set_kwargs, dataset_name = init_dataset_kwargs(data=args.data_dir, class_name='datasets.eg3d_dataset.ImageFolderDataset') # only load pose here | |
| # if args.cond and not training_set_kwargs.use_labels: | |
| # raise Exception('check here') | |
| # training_set_kwargs.use_labels = args.cond | |
| training_set_kwargs.use_labels = True | |
| training_set_kwargs.xflip = False | |
| training_set_kwargs.random_seed = SEED | |
| # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
| # * construct ffhq/afhq dataset | |
| training_set = dnnlib.util.construct_class_by_name( | |
| **training_set_kwargs) # subclass of training.dataset.Dataset | |
| training_set = dnnlib.util.construct_class_by_name( | |
| **training_set_kwargs) # subclass of training.dataset.Dataset | |
| training_set_sampler = InfiniteSampler( | |
| dataset=training_set, | |
| rank=dist_util.get_rank(), | |
| num_replicas=dist_util.get_world_size(), | |
| seed=SEED) | |
| data = iter( | |
| th.utils.data.DataLoader(dataset=training_set, | |
| sampler=training_set_sampler, | |
| batch_size=args.batch_size, | |
| pin_memory=True, | |
| num_workers=args.num_workers,)) | |
| # prefetch_factor=2)) | |
| eval_data = th.utils.data.DataLoader(dataset=Subset(training_set, np.arange(10)), | |
| batch_size=args.eval_batch_size, | |
| num_workers=1) | |
| args.img_size = [args.image_size_encoder] | |
| # try dry run | |
| # batch = next(data) | |
| # batch = None | |
| # logger.log("creating model and diffusion...") | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
| opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
| loss_class = E3DGELossClass(device, opt).to(device) | |
| # writer = SummaryWriter() # TODO, add log dir | |
| logger.log("training...") | |
| TrainLoop = { | |
| 'cvD': nsr.TrainLoop3DcvD, | |
| 'nvsD': nsr.TrainLoop3DcvD_nvsD, | |
| 'cano_nvs_cvD': nsr.TrainLoop3DcvD_nvsD_canoD, | |
| 'canoD': nsr.TrainLoop3DcvD_canoD | |
| }[args.trainer_name] | |
| TrainLoop(rec_model=auto_encoder, | |
| loss_class=loss_class, | |
| data=data, | |
| eval_data=eval_data, | |
| **vars(args)).run_loop() # ! overfitting | |
| def create_argparser(**kwargs): | |
| # defaults.update(model_and_diffusion_defaults()) | |
| defaults = dict( | |
| dataset_size=-1, | |
| trainer_name='cvD', | |
| use_amp=False, | |
| overfitting=False, | |
| num_workers=4, | |
| image_size=128, | |
| image_size_encoder=224, | |
| iterations=150000, | |
| anneal_lr=False, | |
| lr=5e-5, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| batch_size=1, | |
| eval_batch_size=12, | |
| microbatch=-1, # -1 disables microbatches | |
| ema_rate="0.9999", # comma-separated list of EMA values | |
| log_interval=50, | |
| eval_interval=2500, | |
| save_interval=10000, | |
| resume_checkpoint="", | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| data_dir="", | |
| eval_data_dir="", | |
| # load_depth=False, # TODO | |
| logdir="/mnt/lustre/yslan/logs/nips23/", | |
| resume_checkpoint_EG3D="", | |
| ) | |
| defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
| defaults.update(loss_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| os.environ[ | |
| "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
| os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" | |
| # master_addr = '127.0.0.1' | |
| # master_port = dist_util._find_free_port() | |
| # master_port = 31323 | |
| args = create_argparser().parse_args() | |
| args.local_rank = int(os.environ["LOCAL_RANK"]) | |
| args.gpus = th.cuda.device_count() | |
| opts = args | |
| args.rendering_kwargs = rendering_options_defaults(opts) | |
| # print(args) | |
| with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
| json.dump(vars(args), f, indent=2) | |
| # Launch processes. | |
| print('Launching processes...') | |
| try: | |
| training_loop(args) | |
| # except KeyboardInterrupt as e: | |
| except Exception as e: | |
| # print(e) | |
| traceback.print_exc() | |
| dist_util.cleanup() # clean port and socket when ctrl+c | |