File size: 13,635 Bytes
27ca8b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import gradio as gr
import time
import sys
import subprocess
import time
from pathlib import Path
import hydra
from omegaconf import DictConfig, OmegaConf
from omegaconf.omegaconf import open_dict
from utils.print_utils import cyan
from utils.ckpt_utils import download_latest_checkpoint, is_run_id
from utils.cluster_utils import submit_slurm_job
from utils.distributed_utils import is_rank_zero
import numpy as np
import torch
from datasets.video.minecraft_video_dataset import *
import torchvision.transforms as transforms
import cv2
import subprocess
from PIL import Image
from datetime import datetime
ACTION_KEYS = [
"inventory",
"ESC",
"hotbar.1",
"hotbar.2",
"hotbar.3",
"hotbar.4",
"hotbar.5",
"hotbar.6",
"hotbar.7",
"hotbar.8",
"hotbar.9",
"forward",
"back",
"left",
"right",
"cameraY",
"cameraX",
"jump",
"sneak",
"sprint",
"swapHands",
"attack",
"use",
"pickItem",
"drop",
]
# Mapping of input keys to action names
KEY_TO_ACTION = {
"Q": ("forward", 1),
"E": ("back", 1),
"W": ("cameraY", -1),
"S": ("cameraY", 1),
"A": ("cameraX", -1),
"D": ("cameraX", 1),
"U": ("drop", 1),
"N": ("noop", 1),
"1": ("hotbar.1", 1),
}
def parse_input_to_tensor(input_str):
"""
Convert an input string into a (sequence_length, 25) tensor, where each row is a one-hot representation
of the corresponding action key.
Args:
input_str (str): A string consisting of "WASD" characters (e.g., "WASDWS").
Returns:
torch.Tensor: A tensor of shape (sequence_length, 25), where each row is a one-hot encoded action.
"""
# Get the length of the input sequence
seq_len = len(input_str)
# Initialize a zero tensor of shape (seq_len, 25)
action_tensor = torch.zeros((seq_len, 25))
# Iterate through the input string and update the corresponding positions
for i, char in enumerate(input_str):
action, value = KEY_TO_ACTION.get(char.upper()) # Convert to uppercase to handle case insensitivity
if action and action in ACTION_KEYS:
index = ACTION_KEYS.index(action)
action_tensor[i, index] = value # Set the corresponding action index to 1
return action_tensor
def load_image_as_tensor(image_path: str) -> torch.Tensor:
"""
Load an image and convert it to a 0-1 normalized tensor.
Args:
image_path (str): Path to the image file.
Returns:
torch.Tensor: Image tensor of shape (C, H, W), normalized to [0,1].
"""
if isinstance(image_path, str):
image = Image.open(image_path).convert("RGB") # Ensure it's RGB
else:
image = image_path
transform = transforms.Compose([
transforms.ToTensor(), # Converts to tensor and normalizes to [0,1]
])
return transform(image)
def run_local(cfg: DictConfig):
# delay some imports in case they are not needed in non-local envs for submission
from experiments import build_experiment
# Get yaml names
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
cfg_choice = OmegaConf.to_container(hydra_cfg.runtime.choices)
with open_dict(cfg):
if cfg_choice["experiment"] is not None:
cfg.experiment._name = cfg_choice["experiment"]
if cfg_choice["dataset"] is not None:
cfg.dataset._name = cfg_choice["dataset"]
if cfg_choice["algorithm"] is not None:
cfg.algorithm._name = cfg_choice["algorithm"]
# launch experiment
experiment = build_experiment(cfg, None, cfg.checkpoint_path)
return experiment.exec_interactive(cfg.experiment.tasks[0])
memory_frames = []
memory_curr_frame = 0
input_history = ""
ICE_PLAINS_IMAGE = "assets/ice_plains.png"
DESERT_IMAGE = "assets/desert.png"
SAVANNA_IMAGE = "assets/savanna.png"
PLAINS_IMAGE = "assets/plans.png"
PLACE_IMAGE = "assets/place.png"
SUNFLOWERS_IMAGE = "assets/sunflower_plains.png"
SUNFLOWERS_RAIN_IMAGE = "assets/rain_sunflower_plains.png"
DEFAULT_IMAGE = ICE_PLAINS_IMAGE
device = "cuda:0"
def save_video(frames, path="output.mp4", fps=10):
h, w, _ = frames[0].shape
out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'XVID'), fps, (w, h))
for frame in frames:
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
ffmpeg_cmd = [
"ffmpeg", "-y", "-i", path, "-c:v", "libx264", "-crf", "23", "-preset", "medium", path
]
subprocess.run(ffmpeg_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return path
@hydra.main(
version_base=None,
config_path="configurations",
config_name="config",
)
def run(cfg: DictConfig):
algo = run_local(cfg)
algo.to("cuda:0")
actions = torch.zeros((1, 25))
poses = torch.zeros((1, 5))
memory_frames.append(load_image_as_tensor(DEFAULT_IMAGE))
_ = algo.interactive(memory_frames[0],
actions[0],
poses[0],
memory_curr_frame,
device="cuda:0")
def set_denoising_steps(denoising_steps, sampling_timesteps_state):
algo.sampling_timesteps = denoising_steps
algo.diffusion_model.sampling_timesteps = denoising_steps
sampling_timesteps_state = denoising_steps
print("set denoising steps to", algo.sampling_timesteps)
return sampling_timesteps_state
def update_image_and_log(keys):
actions = parse_input_to_tensor(keys)
global input_history
global memory_curr_frame
for i in range(len(actions)):
memory_curr_frame += 1
new_frame = algo.interactive(memory_frames[0],
actions[i],
None,
memory_curr_frame,
device="cuda:0")
memory_frames.append(new_frame)
out_video = torch.stack(memory_frames)
out_video = out_video.permute(0,2,3,1).numpy()
out_video = np.clip(out_video, a_min=0.0, a_max=1.0)
out_video = (out_video * 255).astype(np.uint8)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
os.makedirs("outputs_gradio", exist_ok=True)
filename = f"outputs_gradio/{timestamp}.mp4"
save_video(out_video, filename)
input_history += keys
return out_video[-1], filename, input_history
def reset():
global memory_curr_frame
global input_history
global memory_frames
algo.reset()
memory_frames = []
memory_frames.append(load_image_as_tensor(DEFAULT_IMAGE))
memory_curr_frame = 0
input_history = ""
_ = algo.interactive(memory_frames[0],
actions[0],
poses[0],
memory_curr_frame,
device="cuda:0")
return input_history, DEFAULT_IMAGE
def on_image_click(SELECTED_IMAGE):
global DEFAULT_IMAGE
DEFAULT_IMAGE = SELECTED_IMAGE
reset()
return SELECTED_IMAGE
css = """
h1 {
text-align: center;
display:block;
}
"""
# update_image_and_log("W")
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# WORLDMEM: Long-term Consistent World Generation with Memory
<div style="text-align: center;">
<!-- Public Website -->
<a style="display:inline-block" href="https://nirvanalan.github.io/projects/GA/">
<img src="https://img.shields.io/badge/public_website-8A2BE2">
</a>
<!-- GitHub Stars -->
<a style="display:inline-block; margin-left: .5em" href="https://github.com/NIRVANALAN/GaussianAnything">
<img src="https://img.shields.io/github/stars/NIRVANALAN/GaussianAnything?style=social">
</a>
<!-- Project Page -->
<a style="display:inline-block; margin-left: .5em" href="https://nirvanalan.github.io/projects/GA/">
<img src="https://img.shields.io/badge/project_page-blue">
</a>
<!-- arXiv Paper -->
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/XXXX.XXXXX">
<img src="https://img.shields.io/badge/arXiv-paper-red">
</a>
</div>
"""
)
with gr.Row(variant="panel"):
video_display = gr.Video(autoplay=True, loop=True)
image_display = gr.Image(value=DEFAULT_IMAGE, interactive=False, label="Last Frame")
with gr.Row(variant="panel"):
with gr.Column(scale=2):
input_box = gr.Textbox(label="Action Sequence", placeholder="Enter action sequence here...", lines=1, max_lines=1)
log_output = gr.Textbox(label="History Log", interactive=False)
with gr.Column(scale=1):
slider = gr.Slider(minimum=10, maximum=50, value=algo.sampling_timesteps, step=1, label="Denoising Steps")
submit_button = gr.Button("Generate")
reset_btn = gr.Button("Reset")
sampling_timesteps_state = gr.State(algo.sampling_timesteps)
example_actions = ["DDDDDDDDEEEEEEEEEESSSAAAAAAAAWWW", "DDDDDDDDDDDDQQQQQQQQQQQQQQQDDDDDDDDDDDD",
"DDDDWWWDDDDDDDDDDDDDDDDDDDDSSSAAAAAAAAAAAAAAAAAAAAAAAA", "SSUNNWWEEEEEEEEEAAASSUNNWWEEEEEEEEEAAAAAAAAAAAAAAAAAAAAAA"]
def set_action(action):
return action
gr.Markdown("### Action sequence examples.")
with gr.Row():
buttons = []
for action in example_actions[:2]:
with gr.Column(scale=len(action)):
buttons.append(gr.Button(action))
with gr.Row():
for action in example_actions[2:4]:
with gr.Column(scale=len(action)):
buttons.append(gr.Button(action))
with gr.Row():
for action in example_actions[4:5]:
with gr.Column(scale=len(action)):
buttons.append(gr.Button(action))
for button, action in zip(buttons, example_actions):
button.click(set_action, inputs=[gr.State(value=action)], outputs=input_box)
gr.Markdown("### Click on the images below to reset the sequence and generate from the new image.")
with gr.Row():
image_display_1 = gr.Image(value=SUNFLOWERS_IMAGE, interactive=False, label="Sunflower Plains")
image_display_2 = gr.Image(value=DESERT_IMAGE, interactive=False, label="Desert")
image_display_3 = gr.Image(value=SAVANNA_IMAGE, interactive=False, label="Savanna")
image_display_4 = gr.Image(value=ICE_PLAINS_IMAGE, interactive=False, label="Ice Plains")
image_display_5 = gr.Image(value=SUNFLOWERS_RAIN_IMAGE, interactive=False, label="Rainy Sunflower Plains")
image_display_6 = gr.Image(value=PLACE_IMAGE, interactive=False, label="Place")
gr.Markdown(
"""
## Instructions & Notes:
1. Enter an action sequence in the **"Action Sequence"** text box and click **"Generate"** to begin.
2. You can continue generation by clicking **"Generation"** again and again. Previous sequences are logged in the history panel.
3. Click **"Reset"** to clear the current sequence and start fresh.
4. Action sequences can be composed using the following keys:
- W: turn up
- S: turn down
- A: turn left
- D: turn right
- Q: move forward
- E: move backward
- N: no-op (do nothing)
- 1: switch to hotbar 1
- U: use item
5. Higher denoising steps produce more detailed results but take longer. **20 steps** is a good balance between quality and speed.
6. If you find this project interesting or useful, please consider giving it a ⭐️ on [GitHub]()!
7. For feedback or suggestions, feel free to open a GitHub issue or contact me directly at **[email protected]**.
"""
)
# input_box.submit(update_image_and_log, inputs=[input_box], outputs=[image_display, video_display, log_output])
submit_button.click(update_image_and_log, inputs=[input_box], outputs=[image_display, video_display, log_output])
reset_btn.click(reset, outputs=[log_output, image_display])
image_display_1.select(lambda: on_image_click(SUNFLOWERS_IMAGE), outputs=image_display)
image_display_2.select(lambda: on_image_click(DESERT_IMAGE), outputs=image_display)
image_display_3.select(lambda: on_image_click(SAVANNA_IMAGE), outputs=image_display)
image_display_4.select(lambda: on_image_click(ICE_PLAINS_IMAGE), outputs=image_display)
image_display_5.select(lambda: on_image_click(SUNFLOWERS_RAIN_IMAGE), outputs=image_display)
image_display_6.select(lambda: on_image_click(PLACE_IMAGE), outputs=image_display)
slider.change(fn=set_denoising_steps, inputs=[slider, sampling_timesteps_state], outputs=sampling_timesteps_state)
# 允许公开访问
demo.launch(share=True)
demo.launch(server_name="0.0.0.0", server_port=30066)
if __name__ == "__main__":
run() # pylint: disable=no-value-for-parameter
|