File size: 13,996 Bytes
27ca8b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import torch
from typing import Sequence
import numpy as np
import io
import tarfile
from pytorchvideo.data.encoded_video import EncodedVideo
from omegaconf import DictConfig
from tqdm import tqdm
from .base_video_dataset import BaseVideoDataset
from typing import Mapping, Sequence
import os
import math
from packaging import version as pver
from PIL import Image
import random
def euler_to_rotation_matrix(pitch, yaw):
"""
Convert euler angles (pitch, yaw) to a 3x3 rotation matrix.
pitch: rotation around x-axis (in radians)
yaw: rotation around y-axis (in radians)
"""
# Rotation matrix around x-axis (pitch)
R_x = np.array([
[1, 0, 0],
[0, math.cos(pitch), -math.sin(pitch)],
[0, math.sin(pitch), math.cos(pitch)]
])
# Rotation matrix around y-axis (yaw)
R_y = np.array([
[math.cos(yaw), 0, math.sin(yaw)],
[0, 1, 0],
[-math.sin(yaw), 0, math.cos(yaw)]
])
# Combined rotation matrix
R = np.dot(R_y, R_x)
return R
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def camera_to_world_to_world_to_camera(camera_to_world):
"""
Convert Camera-to-World matrix to World-to-Camera matrix by inverting the transformation.
"""
# Extract rotation (R) and translation (T)
R = camera_to_world[:3, :3]
T = camera_to_world[:3, 3]
# Calculate World-to-Camera (inverse) matrix
world_to_camera = np.eye(4)
# The rotation part of World-to-Camera is the transpose of Camera-to-World's rotation
world_to_camera[:3, :3] = R.T
# The translation part is the negative of the rotated translation
world_to_camera[:3, 3] = -np.dot(R.T, T)
return world_to_camera
def euler_to_camera_to_world_matrix(pose):
x, y, z, pitch, yaw = pose
# Convert pitch and yaw to radians
pitch = math.radians(pitch)
yaw = math.radians(yaw)
# Get the rotation matrix from Euler angles
R = euler_to_rotation_matrix(pitch, yaw)
# Create the 4x4 transformation matrix (rotation + translation)
camera_to_world = np.eye(4)
# Set the rotation part (upper 3x3)
camera_to_world[:3, :3] = R
# Set the translation part (last column)
camera_to_world[:3, 3] = [x, y, z]
return camera_to_world
def tensor_to_gif(tensor, output_path, fps=10):
"""
Converts a PyTorch tensor of shape (F, 3, H, W) to a GIF.
Args:
tensor (torch.Tensor): Input tensor of shape (F, 3, H, W) with values in range [0, 1] or [0, 255].
output_path (str): Path to save the output GIF.
fps (int): Frames per second for the GIF.
"""
# Ensure the tensor is in [0, 255] range
if tensor.max() <= 1.0:
tensor = (tensor * 255).byte()
else:
tensor = tensor.byte()
# Convert tensor to numpy array and rearrange to (F, H, W, 3)
frames = tensor.permute(0, 2, 3, 1).cpu().numpy()
# Convert frames to PIL Images
pil_frames = [Image.fromarray(frame) for frame in frames]
# Save as GIF
pil_frames[0].save(
output_path,
save_all=True,
append_images=pil_frames[1:],
duration=int(1000 / fps),
loop=0
)
def get_relative_pose(cam_params, zero_first_frame_scale):
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
source_cam_c2w = abs_c2ws[0]
if zero_first_frame_scale:
cam_to_origin = 0
else:
cam_to_origin = np.linalg.norm(source_cam_c2w[:3, 3])
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, -cam_to_origin],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
ret_poses = np.array(ret_poses, dtype=np.float32)
return ret_poses
def ray_condition(K, c2w, H, W, device):
# c2w: B, V, 4, 4
# K: B, V, 4
B = K.shape[0]
j, i = custom_meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
)
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
# c2w @ dirctions
rays_dxo = torch.linalg.cross(rays_o, rays_d)
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
return plucker
class Camera(object):
def __init__(self, entry, focal_length=0.35):
self.fx = focal_length # 0.35 correspond to 110 fov
self.fy = focal_length*640/360
self.cx = 0.5
self.cy = 0.5
self.c2w_mat = euler_to_camera_to_world_matrix(entry)
self.w2c_mat = camera_to_world_to_world_to_camera(np.copy(self.c2w_mat))
ACTION_KEYS = [
"inventory",
"ESC",
"hotbar.1",
"hotbar.2",
"hotbar.3",
"hotbar.4",
"hotbar.5",
"hotbar.6",
"hotbar.7",
"hotbar.8",
"hotbar.9",
"forward",
"back",
"left",
"right",
"cameraY",
"cameraX",
"jump",
"sneak",
"sprint",
"swapHands",
"attack",
"use",
"pickItem",
"drop",
]
def one_hot_actions(actions: Sequence[Mapping[str, int]]) -> torch.Tensor:
actions_one_hot = torch.zeros(len(actions), len(ACTION_KEYS))
for i, current_actions in enumerate(actions):
for j, action_key in enumerate(ACTION_KEYS):
if action_key.startswith("camera"):
if action_key == "cameraX":
value = current_actions["camera"][0]
elif action_key == "cameraY":
value = current_actions["camera"][1]
else:
raise ValueError(f"Unknown camera action key: {action_key}")
max_val = 20
bin_size = 0.5
num_buckets = int(max_val / bin_size)
value = (value - num_buckets) / num_buckets
assert -1 - 1e-3 <= value <= 1 + 1e-3, f"Camera action value must be in [-1, 1], got {value}"
else:
value = current_actions[action_key]
assert 0 <= value <= 1, f"Action value must be in [0, 1] got {value}"
actions_one_hot[i, j] = value
return actions_one_hot
def simpletomulti(actions):
vec_25 = torch.zeros(len(actions), len(ACTION_KEYS))
vec_25[actions==1, 11] = 1
vec_25[actions==2, 16] = -1
vec_25[actions==3, 16] = 1
vec_25[actions==4, 15] = -1
vec_25[actions==5, 15] = 1
return vec_25
def simpletomulti2(actions):
vec_25 = torch.zeros(len(actions), len(ACTION_KEYS))
vec_25[actions[:,0]==1, 11] = 1
vec_25[actions[:,0]==2, 12] = 1
vec_25[actions[:,4]==11, 16] = -1
vec_25[actions[:,4]==13, 16] = 1
vec_25[actions[:,3]==11, 15] = -1
vec_25[actions[:,3]==13, 15] = 1
vec_25[actions[:,5]==6, 24] = 1
vec_25[actions[:,5]==1, 24] = 1
vec_25[actions[:,1]==1, 13] = 1
vec_25[actions[:,1]==2, 14] = 1
vec_25[actions[:,7]==1, 2] = 1
return vec_25
class MinecraftVideoPoseDataset(BaseVideoDataset):
"""
Minecraft dataset
"""
def __init__(self, cfg: DictConfig, split: str = "training"):
if split == "test":
split = "validation"
super().__init__(cfg, split)
if hasattr(cfg, "n_frames_valid") and split == "validation":
self.n_frames = cfg.n_frames_valid
def get_data_paths(self, split):
data_dir = self.save_dir / split
paths = sorted(list(data_dir.glob("**/*.mp4")), key=lambda x: x.name)
if len(paths) == 0:
sub_path = os.listdir(data_dir)
for sp in sub_path:
data_dir = self.save_dir / split / sp
paths = paths+sorted(list(data_dir.glob("**/*.mp4")), key=lambda x: x.name)
return paths
def get_data_lengths(self, split):
lengths = [300] * len(self.get_data_paths(split))
return lengths
def download_dataset(self) -> Sequence[int]:
from internetarchive import download
part_suffixes = [
"aa",
"ab",
"ac",
"ad",
"ae",
"af",
"ag",
"ah",
"ai",
"aj",
"ak",
]
for part_suffix in part_suffixes:
identifier = f"minecraft_marsh_dataset_{part_suffix}"
file_name = f"minecraft.tar.part{part_suffix}"
download(identifier, file_name, destdir=self.save_dir, verbose=True)
combined_bytes = io.BytesIO()
for part_suffix in part_suffixes:
identifier = f"minecraft_marsh_dataset_{part_suffix}"
file_name = f"minecraft.tar.part{part_suffix}"
part_file = self.save_dir / identifier / file_name
with open(part_file, "rb") as part:
combined_bytes.write(part.read())
combined_bytes.seek(0)
with tarfile.open(fileobj=combined_bytes, mode="r") as combined_archive:
combined_archive.extractall(self.save_dir)
(self.save_dir / "minecraft/test").rename(self.save_dir / "validation")
(self.save_dir / "minecraft/train").rename(self.save_dir / "training")
(self.save_dir / "minecraft").rmdir()
for part_suffix in part_suffixes:
identifier = f"minecraft_marsh_dataset_{part_suffix}"
file_name = f"minecraft.tar.part{part_suffix}"
part_file = self.save_dir / identifier / file_name
part_file.rmdir()
def __getitem__(self, idx):
# return self.load_data(idx)
max_retries = 1000
for mr in range(max_retries):
try:
return self.load_data(idx)
except Exception as e:
print(f"{mr} Error: {e}")
# idx = self.idx_remap[idx]
# file_idx, frame_idx = self.split_idx(idx)
# video_path = self.data_paths[file_idx]
# os.remove(video_path)
idx = (idx + 1) % self.__len__()
def load_data(self, idx):
idx = self.idx_remap[idx]
file_idx, frame_idx = self.split_idx(idx)
action_path = self.data_paths[file_idx]
video_path = self.data_paths[file_idx]
action_path = video_path.with_suffix(".npz")
actions_pool = np.load(action_path)['actions']
poses_pool = np.load(action_path)['poses']
poses_pool[0,1] = poses_pool[1,1] # wrong first in place
assert poses_pool[:,1].max() - poses_pool[:,1].min() < 2, f"wrong~~~~{poses_pool[:,1].max() - poses_pool[:,1].min()}-{video_path}"
if len(poses_pool) < len(actions_pool):
poses_pool = np.pad(poses_pool, ((1, 0), (0, 0)))
actions_pool = simpletomulti2(actions_pool)
video_raw = EncodedVideo.from_path(video_path, decode_audio=False)
frame_idx = frame_idx + 100 # avoid first frames # first frame is useless
if self.split == "validation":
frame_idx = 240
total_frame = video_raw.duration.numerator
fps = 10 # video_raw.duration.denominator
total_frame = total_frame * fps / video_raw.duration.denominator
video = video_raw.get_clip(start_sec=frame_idx/fps, end_sec=(frame_idx+self.n_frames)/fps)["video"]
video = video.permute(1, 2, 3, 0).numpy()
if self.split != "validation" and 'degrees' in np.load(action_path).keys():
degrees = np.load(action_path)['degrees']
actions_pool[:,16] *= degrees
actions = np.copy(actions_pool[frame_idx : frame_idx + self.n_frames]) # (t, )
poses = np.copy(poses_pool[frame_idx : frame_idx + self.n_frames])
pad_len = self.n_frames - len(video)
poses_pool[:,:3] -= poses[:1,:3]
# poses_pool[:,3:] = -poses_pool[:,3:]
poses_pool[:,-1] = -poses_pool[:,-1]
poses_pool[:,3:] %= 360
poses[:,:3] -= poses[:1,:3] # do not normalize angle
# poses[:,3:] = -poses[:,3:]
poses[:,-1] = -poses[:,-1]
poses[:,3:] %= 360
nonterminal = np.ones(self.n_frames)
if len(video) < self.n_frames:
video = np.pad(video, ((0, pad_len), (0, 0), (0, 0), (0, 0)))
actions = np.pad(actions, ((0, pad_len),))
poses = np.pad(actions, ((0, pad_len),))
nonterminal[-pad_len:] = 0
video = torch.from_numpy(video / 255.0).float().permute(0, 3, 1, 2).contiguous()
return (
video[:: self.frame_skip],
actions[:: self.frame_skip],
poses[:: self.frame_skip]
)
if __name__ == "__main__":
import torch
from unittest.mock import MagicMock
import tqdm
cfg = MagicMock()
cfg.resolution = 64
cfg.external_cond_dim = 0
cfg.n_frames = 64
cfg.save_dir = "data/minecraft"
cfg.validation_multiplier = 1
dataset = MinecraftVideoDataset(cfg, "training")
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True, num_workers=16)
for batch in tqdm.tqdm(dataloader):
pass
|