File size: 18,178 Bytes
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8c42f
ae8fd03
 
a7ea928
27ca8b3
0d5deae
 
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae8fd03
 
 
 
 
 
 
 
 
 
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c09e983
27ca8b3
 
0d5deae
 
 
 
 
 
 
 
 
 
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
cd8c42f
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
ae8fd03
 
 
 
 
 
0d5deae
ae8fd03
e128dab
 
ae8fd03
0d5deae
ae8fd03
f373311
e128dab
f373311
 
 
 
 
594fef7
 
750f1b3
594fef7
 
0d5deae
e128dab
 
ae8fd03
 
f373311
 
e128dab
f373311
 
 
e128dab
 
ae8fd03
 
 
 
 
 
 
 
3b61a0b
 
 
 
 
 
 
 
 
 
 
 
eda3a61
f373311
0cb2a53
ae8fd03
0d5deae
ae8fd03
858a19b
e128dab
858a19b
 
 
 
0cb2a53
 
 
 
 
 
 
 
 
 
 
0d5deae
0cb2a53
0d5deae
 
 
 
 
 
 
 
 
 
 
ae8fd03
 
e5d4346
a7ea928
 
c09e983
ae8fd03
a7ea928
76b382c
ae8fd03
 
 
 
858a19b
e128dab
858a19b
 
 
76b382c
f373311
 
594fef7
f373311
 
0d5deae
ae8fd03
 
e128dab
beb5f3e
 
 
 
e128dab
beb5f3e
 
 
 
ae8fd03
 
 
d3d004a
 
 
 
 
27ca8b3
ae8fd03
 
 
 
 
 
 
 
 
 
 
 
27ca8b3
ae8fd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b61a0b
 
 
 
ae8fd03
 
 
 
3b61a0b
ae8fd03
 
 
 
3b61a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae8fd03
3b61a0b
 
 
ae8fd03
 
 
 
3b61a0b
 
 
ae8fd03
 
 
 
3b61a0b
 
ae8fd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769bd7
 
 
 
 
 
 
 
0cb2a53
 
 
 
ae8fd03
 
 
eda3a61
ae8fd03
 
 
 
 
 
 
 
3b61a0b
 
 
ae8fd03
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import gradio as gr
import time

import sys
import subprocess
import time
from pathlib import Path

import hydra
from omegaconf import DictConfig, OmegaConf
from omegaconf.omegaconf import open_dict

from utils.print_utils import cyan
from utils.ckpt_utils import download_latest_checkpoint, is_run_id
from utils.cluster_utils import submit_slurm_job
from utils.distributed_utils import is_rank_zero
import numpy as np
import torch
from datasets.video.minecraft_video_dataset import *
import torchvision.transforms as transforms
import cv2
import subprocess
from PIL import Image
from datetime import datetime
import spaces
from algorithms.worldmem import WorldMemMinecraft
from huggingface_hub import hf_hub_download
import tempfile

torch.set_float32_matmul_precision("high")

ACTION_KEYS = [
    "inventory",
    "ESC",
    "hotbar.1",
    "hotbar.2",
    "hotbar.3",
    "hotbar.4",
    "hotbar.5",
    "hotbar.6",
    "hotbar.7",
    "hotbar.8",
    "hotbar.9",
    "forward",
    "back",
    "left",
    "right",
    "cameraY",
    "cameraX",
    "jump",
    "sneak",
    "sprint",
    "swapHands",
    "attack",
    "use",
    "pickItem",
    "drop",
]

# Mapping of input keys to action names
KEY_TO_ACTION = {
    "Q": ("forward", 1),
    "E": ("back", 1),    
    "W": ("cameraY", -1),
    "S": ("cameraY", 1),
    "A": ("cameraX", -1),
    "D": ("cameraX", 1),
    "U": ("drop", 1),
    "N": ("noop", 1),
    "1": ("hotbar.1", 1),
}

def load_custom_checkpoint(algo, checkpoint_path):
    hf_ckpt = str(checkpoint_path).split('/')
    repo_id = '/'.join(hf_ckpt[:2])
    file_name = '/'.join(hf_ckpt[2:])
    model_path = hf_hub_download(repo_id=repo_id, 
                        filename=file_name)
    ckpt = torch.load(model_path, map_location=torch.device('cpu'))
    algo.load_state_dict(ckpt['state_dict'], strict=False)


def parse_input_to_tensor(input_str):
    """
    Convert an input string into a (sequence_length, 25) tensor, where each row is a one-hot representation 
    of the corresponding action key.

    Args:
        input_str (str): A string consisting of "WASD" characters (e.g., "WASDWS").

    Returns:
        torch.Tensor: A tensor of shape (sequence_length, 25), where each row is a one-hot encoded action.
    """
    # Get the length of the input sequence
    seq_len = len(input_str)
    
    # Initialize a zero tensor of shape (seq_len, 25)
    action_tensor = torch.zeros((seq_len, 25))

    # Iterate through the input string and update the corresponding positions
    for i, char in enumerate(input_str):
        action, value = KEY_TO_ACTION.get(char.upper())  # Convert to uppercase to handle case insensitivity
        if action and action in ACTION_KEYS:
            index = ACTION_KEYS.index(action)
            action_tensor[i, index] = value  # Set the corresponding action index to 1

    return action_tensor

def load_image_as_tensor(image_path: str) -> torch.Tensor:
    """
    Load an image and convert it to a 0-1 normalized tensor.
    
    Args:
        image_path (str): Path to the image file.
    
    Returns:
        torch.Tensor: Image tensor of shape (C, H, W), normalized to [0,1].
    """
    if isinstance(image_path, str):
        image = Image.open(image_path).convert("RGB")  # Ensure it's RGB
    else:
        image = image_path
    transform = transforms.Compose([
        transforms.ToTensor(),  # Converts to tensor and normalizes to [0,1]
    ])
    return transform(image)

def run_local(cfg: DictConfig):
    # delay some imports in case they are not needed in non-local envs for submission
    from experiments import build_experiment

    # Get yaml names
    hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
    cfg_choice = OmegaConf.to_container(hydra_cfg.runtime.choices)

    with open_dict(cfg):
        if cfg_choice["experiment"] is not None:
            cfg.experiment._name = cfg_choice["experiment"]
        if cfg_choice["dataset"] is not None:
            cfg.dataset._name = cfg_choice["dataset"]
        if cfg_choice["algorithm"] is not None:
            cfg.algorithm._name = cfg_choice["algorithm"]

    # launch experiment
    experiment = build_experiment(cfg, None, None)
    return experiment.exec_interactive(cfg.experiment.tasks[0])

def enable_amp(model, precision="16-mixed"):
    original_forward = model.forward

    def amp_forward(*args, **kwargs):
        with torch.autocast("cuda", dtype=torch.float16 if precision == "16-mixed" else torch.bfloat16):
            return original_forward(*args, **kwargs)

    model.forward = amp_forward
    return model

memory_frames = []
memory_curr_frame = 0
input_history = ""
ICE_PLAINS_IMAGE = "assets/ice_plains.png"
DESERT_IMAGE = "assets/desert.png"
SAVANNA_IMAGE = "assets/savanna.png"
PLAINS_IMAGE = "assets/plans.png"
PLACE_IMAGE = "assets/place.png"
SUNFLOWERS_IMAGE = "assets/sunflower_plains.png"
SUNFLOWERS_RAIN_IMAGE = "assets/rain_sunflower_plains.png"

DEFAULT_IMAGE = ICE_PLAINS_IMAGE
device = torch.device('cuda')

def save_video(frames, path="output.mp4", fps=10):
    h, w, _ = frames[0].shape
    out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'XVID'), fps, (w, h))
    for frame in frames:
        out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
    out.release()

    ffmpeg_cmd = [
        "ffmpeg", "-y", "-i", path, "-c:v", "libx264", "-crf", "23", "-preset", "medium", path
    ]
    subprocess.run(ffmpeg_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
    return path

cfg = OmegaConf.load("configurations/huggingface.yaml")
worldmem = WorldMemMinecraft(cfg)
load_custom_checkpoint(algo=worldmem.diffusion_model, checkpoint_path=cfg.diffusion_path)
load_custom_checkpoint(algo=worldmem.vae, checkpoint_path=cfg.vae_path)
load_custom_checkpoint(algo=worldmem.pose_prediction_model, checkpoint_path=cfg.pose_predictor_path)
worldmem.to("cuda").eval()
worldmem = enable_amp(worldmem, precision="16-mixed")

actions = np.zeros((1, 25), dtype=np.float32)
poses = np.zeros((1, 5), dtype=np.float32)

memory_frames = load_image_as_tensor(DEFAULT_IMAGE)[None].numpy()

self_frames = None
self_actions = None
self_poses = None
self_memory_c2w = None
self_frame_idx = None


def get_duration_single_image_to_long_video(first_frame, action, first_pose, device, self_frames, self_actions, 
                            self_poses, self_memory_c2w, self_frame_idx):
    return 5 * len(action) if self_actions is not None else 5

@spaces.GPU(duration=get_duration_single_image_to_long_video)
def run_interactive(first_frame, action, first_pose, device, self_frames, self_actions, 
                            self_poses, self_memory_c2w, self_frame_idx):
    new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = worldmem.interactive(first_frame,
                                    action,
                                    first_pose, 
                                    device=device,
                                    self_frames=self_frames,
                                    self_actions=self_actions,
                                    self_poses=self_poses,
                                    self_memory_c2w=self_memory_c2w,
                                    self_frame_idx=self_frame_idx)

    return new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx

def set_denoising_steps(denoising_steps, sampling_timesteps_state):
    worldmem.sampling_timesteps = denoising_steps
    worldmem.diffusion_model.sampling_timesteps = denoising_steps
    sampling_timesteps_state = denoising_steps
    print("set denoising steps to", worldmem.sampling_timesteps)
    return sampling_timesteps_state

def set_context_length(context_length, sampling_context_length_state):
    worldmem.n_tokens = context_length
    sampling_context_length_state = context_length
    print("set context length to", worldmem.n_tokens)
    return sampling_context_length_state

def set_memory_length(memory_length, sampling_memory_length_state):
    worldmem.condition_similar_length = memory_length
    sampling_memory_length_state = memory_length
    print("set memory length to", worldmem.condition_similar_length)
    return sampling_memory_length_state

def generate(keys):
    # print("algo frame:", len(worldmem.frames))
    input_actions = parse_input_to_tensor(keys)
    global input_history
    global memory_frames
    global memory_curr_frame
    global self_frames
    global self_actions
    global self_poses
    global self_memory_c2w
    global self_frame_idx

    if self_frames is None:
        new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
                                    actions[0],
                                    poses[0],
                                    device=device,
                                    self_frames=self_frames,
                                    self_actions=self_actions,
                                    self_poses=self_poses,
                                    self_memory_c2w=self_memory_c2w,
                                    self_frame_idx=self_frame_idx)

    new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
                                    input_actions,
                                    None,
                                    device=device,
                                    self_frames=self_frames,
                                    self_actions=self_actions,
                                    self_poses=self_poses,
                                    self_memory_c2w=self_memory_c2w,
                                    self_frame_idx=self_frame_idx)

    memory_frames = np.concatenate([memory_frames, new_frame[:,0]])

    out_video = memory_frames.transpose(0,2,3,1)
    out_video = np.clip(out_video, a_min=0.0, a_max=1.0)
    out_video = (out_video * 255).astype(np.uint8)

    temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
    save_video(out_video, temporal_video_path)

    input_history += keys
    return out_video[-1], temporal_video_path, input_history

def reset():
    global memory_curr_frame
    global input_history
    global memory_frames
    global self_frames
    global self_actions
    global self_poses
    global self_memory_c2w
    global self_frame_idx

    self_frames = None
    self_poses = None
    self_actions = None
    self_memory_c2w = None
    self_frame_idx = None
    memory_frames = load_image_as_tensor(DEFAULT_IMAGE).numpy()[None]
    input_history = ""

    new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
                                actions[0],
                                poses[0],
                                device=device,
                                self_frames=self_frames,
                                self_actions=self_actions,
                                self_poses=self_poses,
                                self_memory_c2w=self_memory_c2w,
                                self_frame_idx=self_frame_idx)

    return input_history, DEFAULT_IMAGE

def on_image_click(SELECTED_IMAGE):
    global DEFAULT_IMAGE
    DEFAULT_IMAGE = SELECTED_IMAGE
    reset()
    return SELECTED_IMAGE


css = """
h1 {
    text-align: center;
    display:block;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
        # WORLDMEM: Long-term Consistent World Generation with Memory
        """
        )

        # <div style="text-align: center;">
        # <!-- Public Website -->
        # <a style="display:inline-block" href="https://nirvanalan.github.io/projects/GA/">
        #     <img src="https://img.shields.io/badge/public_website-8A2BE2">
        # </a>

        # <!-- GitHub Stars -->
        # <a style="display:inline-block; margin-left: .5em" href="https://github.com/NIRVANALAN/GaussianAnything">
        #     <img src="https://img.shields.io/github/stars/NIRVANALAN/GaussianAnything?style=social">
        # </a>

        # <!-- Project Page -->
        # <a style="display:inline-block; margin-left: .5em" href="https://nirvanalan.github.io/projects/GA/">
        #     <img src="https://img.shields.io/badge/project_page-blue">
        # </a>

        # <!-- arXiv Paper -->
        # <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/XXXX.XXXXX">
        #     <img src="https://img.shields.io/badge/arXiv-paper-red">
        # </a>
        # </div>

    example_actions = ["AAAAAAAAAAAADDDDDDDDDDDD", "AAAAAAAAAAAAAAAAAAAAAAAA", "DDDDDDDDEEEEEEEEEESSSAAAAAAAAWWW", "DDDDDDDDDDDDQQQQQQQQQQQQQQQDDDDDDDDDDDD", 
    "DDDDWWWDDDDDDDDDDDDDDDDDDDDSSS", "SSUNNWWEEEEEEEEEAAASSUNNWWEEEEEEEEE"]


    with gr.Row(variant="panel"):
        video_display = gr.Video(autoplay=True, loop=True)
        image_display = gr.Image(value=DEFAULT_IMAGE, interactive=False, label="Last Frame")


    with gr.Row(variant="panel"):
        with gr.Column(scale=2):
            input_box = gr.Textbox(label="Action Sequence", placeholder="Enter action sequence here...", lines=1, max_lines=1)
            log_output = gr.Textbox(label="History Log", interactive=False)
            gr.Markdown("### Action sequence examples.")
            with gr.Row():
                buttons = []
                for action in example_actions[:2]:
                    with gr.Column(scale=len(action)):
                        buttons.append(gr.Button(action))
            with gr.Row():
                for action in example_actions[2:4]:
                    with gr.Column(scale=len(action)):
                        buttons.append(gr.Button(action))
            with gr.Row():
                for action in example_actions[4:6]:
                    with gr.Column(scale=len(action)):
                        buttons.append(gr.Button(action))

        with gr.Column(scale=1):
            slider_denoising_step = gr.Slider(minimum=10, maximum=50, value=worldmem.sampling_timesteps, step=1, label="Denoising Steps")
            slider_context_length = gr.Slider(minimum=2, maximum=10, value=worldmem.n_tokens, step=1, label="Context Length")
            slider_memory_length = gr.Slider(minimum=4, maximum=16, value=worldmem.condition_similar_length, step=1, label="Memory Length")
            submit_button = gr.Button("Generate")
            reset_btn = gr.Button("Reset")
    
    sampling_timesteps_state = gr.State(worldmem.sampling_timesteps)
    sampling_context_length_state = gr.State(worldmem.n_tokens)
    sampling_memory_length_state = gr.State(worldmem.condition_similar_length)


    def set_action(action):
        return action
    
    # gr.Markdown("### Action sequence examples.")


    for button, action in zip(buttons, example_actions):
            button.click(set_action, inputs=[gr.State(value=action)], outputs=input_box)


    gr.Markdown("### Click on the images below to reset the sequence and generate from the new image.")

    with gr.Row():
        image_display_1 = gr.Image(value=SUNFLOWERS_IMAGE, interactive=False, label="Sunflower Plains")
        image_display_2 = gr.Image(value=DESERT_IMAGE, interactive=False, label="Desert")
        image_display_3 = gr.Image(value=SAVANNA_IMAGE, interactive=False, label="Savanna")
        image_display_4 = gr.Image(value=ICE_PLAINS_IMAGE, interactive=False, label="Ice Plains")
        image_display_5 = gr.Image(value=SUNFLOWERS_RAIN_IMAGE, interactive=False, label="Rainy Sunflower Plains")
        image_display_6 = gr.Image(value=PLACE_IMAGE, interactive=False, label="Place")        

    gr.Markdown(
        """
        ## Instructions & Notes:

        1. Enter an action sequence in the **"Action Sequence"** text box and click **"Generate"** to begin.
        2. You can continue generation by clicking **"Generation"** again and again. Previous sequences are logged in the history panel.
        3. Click **"Reset"** to clear the current sequence and start fresh.
        4. Action sequences can be composed using the following keys:
            - W: turn up  
            - S: turn down  
            - A: turn left  
            - D: turn right  
            - Q: move forward  
            - E: move backward  
            - N: no-op (do nothing)
            - U: use item  
        5. Higher denoising steps produce more detailed results but take longer. 20 steps is a good balance between quality and speed. The same applies to context and memory length.
        6. For faster performance, we recommend running the demo locally (~1s/frame on H100 vs ~5s on Spaces).
        7. If you find this project interesting or useful, please consider giving it a ⭐️ on [GitHub]()!
        8. For feedback or suggestions, feel free to open a GitHub issue or contact me directly at **[email protected]**.
        """
    )
    # input_box.submit(update_image_and_log, inputs=[input_box], outputs=[image_display, video_display, log_output])
    submit_button.click(generate, inputs=[input_box], outputs=[image_display, video_display, log_output])
    reset_btn.click(reset, outputs=[log_output, image_display])
    image_display_1.select(lambda: on_image_click(SUNFLOWERS_IMAGE), outputs=image_display)
    image_display_2.select(lambda: on_image_click(DESERT_IMAGE), outputs=image_display)
    image_display_3.select(lambda: on_image_click(SAVANNA_IMAGE), outputs=image_display)
    image_display_4.select(lambda: on_image_click(ICE_PLAINS_IMAGE), outputs=image_display)
    image_display_5.select(lambda: on_image_click(SUNFLOWERS_RAIN_IMAGE), outputs=image_display)
    image_display_6.select(lambda: on_image_click(PLACE_IMAGE), outputs=image_display)

    slider_denoising_step.change(fn=set_denoising_steps, inputs=[slider_denoising_step, sampling_timesteps_state], outputs=sampling_timesteps_state)
    slider_context_length.change(fn=set_context_length, inputs=[slider_context_length, sampling_context_length_state], outputs=sampling_context_length_state)
    slider_memory_length.change(fn=set_memory_length, inputs=[slider_memory_length, sampling_memory_length_state], outputs=sampling_memory_length_state)

demo.launch()