worldmem / app.py
xizaoqu
update
c7542a3
raw
history blame
24.6 kB
import gradio as gr
import time
import sys
import subprocess
import time
from pathlib import Path
import hydra
from omegaconf import DictConfig, OmegaConf
from omegaconf.omegaconf import open_dict
from utils.print_utils import cyan
from utils.ckpt_utils import download_latest_checkpoint, is_run_id
from utils.cluster_utils import submit_slurm_job
from utils.distributed_utils import is_rank_zero
import numpy as np
import torch
from datasets.video.minecraft_video_dataset import *
import torchvision.transforms as transforms
import cv2
import subprocess
from PIL import Image
from datetime import datetime
import spaces
from algorithms.worldmem import WorldMemMinecraft
from huggingface_hub import hf_hub_download
import tempfile
torch.set_float32_matmul_precision("high")
ACTION_KEYS = [
"inventory",
"ESC",
"hotbar.1",
"hotbar.2",
"hotbar.3",
"hotbar.4",
"hotbar.5",
"hotbar.6",
"hotbar.7",
"hotbar.8",
"hotbar.9",
"forward",
"back",
"left",
"right",
"cameraY",
"cameraX",
"jump",
"sneak",
"sprint",
"swapHands",
"attack",
"use",
"pickItem",
"drop",
]
# Mapping of input keys to action names
KEY_TO_ACTION = {
"Q": ("forward", 1),
"E": ("back", 1),
"W": ("cameraY", -1),
"S": ("cameraY", 1),
"A": ("cameraX", -1),
"D": ("cameraX", 1),
"U": ("drop", 1),
"N": ("noop", 1),
"1": ("hotbar.1", 1),
}
example_images = [
["1", "assets/ice_plains.png", "turn right+go backward+look up+turn left+look down+turn right+go forward+turn left", 20, 3, 8],
["2", "assets/place.png", "put item+go backward+put item+go backward+go around", 20, 3, 8],
["3", "assets/rain_sunflower_plains.png", "turn right+look up+turn right+look down+turn left+go backward+turn left", 20, 3, 8],
["4", "assets/desert.png", "turn 360 degree+turn right+go forward+turn left", 20, 3, 8],
]
def load_custom_checkpoint(algo, checkpoint_path):
hf_ckpt = str(checkpoint_path).split('/')
repo_id = '/'.join(hf_ckpt[:2])
file_name = '/'.join(hf_ckpt[2:])
model_path = hf_hub_download(repo_id=repo_id,
filename=file_name)
ckpt = torch.load(model_path, map_location=torch.device('cpu'))
algo.load_state_dict(ckpt['state_dict'], strict=False)
def parse_input_to_tensor(input_str):
"""
Convert an input string into a (sequence_length, 25) tensor, where each row is a one-hot representation
of the corresponding action key.
Args:
input_str (str): A string consisting of "WASD" characters (e.g., "WASDWS").
Returns:
torch.Tensor: A tensor of shape (sequence_length, 25), where each row is a one-hot encoded action.
"""
# Get the length of the input sequence
seq_len = len(input_str)
# Initialize a zero tensor of shape (seq_len, 25)
action_tensor = torch.zeros((seq_len, 25))
# Iterate through the input string and update the corresponding positions
for i, char in enumerate(input_str):
action, value = KEY_TO_ACTION.get(char.upper()) # Convert to uppercase to handle case insensitivity
if action and action in ACTION_KEYS:
index = ACTION_KEYS.index(action)
action_tensor[i, index] = value # Set the corresponding action index to 1
return action_tensor
def load_image_as_tensor(image_path: str) -> torch.Tensor:
"""
Load an image and convert it to a 0-1 normalized tensor.
Args:
image_path (str): Path to the image file.
Returns:
torch.Tensor: Image tensor of shape (C, H, W), normalized to [0,1].
"""
if isinstance(image_path, str):
image = Image.open(image_path).convert("RGB") # Ensure it's RGB
else:
image = image_path
transform = transforms.Compose([
transforms.ToTensor(), # Converts to tensor and normalizes to [0,1]
])
return transform(image)
def run_local(cfg: DictConfig):
# delay some imports in case they are not needed in non-local envs for submission
from experiments import build_experiment
# Get yaml names
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
cfg_choice = OmegaConf.to_container(hydra_cfg.runtime.choices)
with open_dict(cfg):
if cfg_choice["experiment"] is not None:
cfg.experiment._name = cfg_choice["experiment"]
if cfg_choice["dataset"] is not None:
cfg.dataset._name = cfg_choice["dataset"]
if cfg_choice["algorithm"] is not None:
cfg.algorithm._name = cfg_choice["algorithm"]
# launch experiment
experiment = build_experiment(cfg, None, None)
return experiment.exec_interactive(cfg.experiment.tasks[0])
def enable_amp(model, precision="16-mixed"):
original_forward = model.forward
def amp_forward(*args, **kwargs):
with torch.autocast("cuda", dtype=torch.float16 if precision == "16-mixed" else torch.bfloat16):
return original_forward(*args, **kwargs)
model.forward = amp_forward
return model
memory_frames = []
input_history = ""
ICE_PLAINS_IMAGE = "assets/ice_plains.png"
DESERT_IMAGE = "assets/desert.png"
SAVANNA_IMAGE = "assets/savanna.png"
PLAINS_IMAGE = "assets/plans.png"
PLACE_IMAGE = "assets/place.png"
SUNFLOWERS_IMAGE = "assets/sunflower_plains.png"
SUNFLOWERS_RAIN_IMAGE = "assets/rain_sunflower_plains.png"
device = torch.device('cuda')
def save_video(frames, path="output.mp4", fps=10):
h, w, _ = frames[0].shape
out = cv2.VideoWriter(path, cv2.VideoWriter_fourcc(*'XVID'), fps, (w, h))
for frame in frames:
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
out.release()
ffmpeg_cmd = [
"ffmpeg", "-y", "-i", path, "-c:v", "libx264", "-crf", "23", "-preset", "medium", path
]
subprocess.run(ffmpeg_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return path
cfg = OmegaConf.load("configurations/huggingface.yaml")
worldmem = WorldMemMinecraft(cfg)
load_custom_checkpoint(algo=worldmem.diffusion_model, checkpoint_path=cfg.diffusion_path)
load_custom_checkpoint(algo=worldmem.vae, checkpoint_path=cfg.vae_path)
load_custom_checkpoint(algo=worldmem.pose_prediction_model, checkpoint_path=cfg.pose_predictor_path)
worldmem.to("cuda").eval()
worldmem = enable_amp(worldmem, precision="16-mixed")
actions = np.zeros((1, 25), dtype=np.float32)
poses = np.zeros((1, 5), dtype=np.float32)
def get_duration_single_image_to_long_video(first_frame, action, first_pose, device, self_frames, self_actions,
self_poses, self_memory_c2w, self_frame_idx):
return 5 * len(action) if self_actions is not None else 5
@spaces.GPU(duration=get_duration_single_image_to_long_video)
def run_interactive(first_frame, action, first_pose, device, self_frames, self_actions,
self_poses, self_memory_c2w, self_frame_idx):
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = worldmem.interactive(first_frame,
action,
first_pose,
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
return new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def set_denoising_steps(denoising_steps, sampling_timesteps_state):
worldmem.sampling_timesteps = denoising_steps
worldmem.diffusion_model.sampling_timesteps = denoising_steps
sampling_timesteps_state = denoising_steps
print("set denoising steps to", worldmem.sampling_timesteps)
return sampling_timesteps_state
def set_context_length(context_length, sampling_context_length_state):
worldmem.n_tokens = context_length
sampling_context_length_state = context_length
print("set context length to", worldmem.n_tokens)
return sampling_context_length_state
def set_memory_length(memory_length, sampling_memory_length_state):
worldmem.condition_similar_length = memory_length
sampling_memory_length_state = memory_length
print("set memory length to", worldmem.condition_similar_length)
return sampling_memory_length_state
def generate(keys, input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx):
input_actions = parse_input_to_tensor(keys)
if self_frames is None:
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
actions[0],
poses[0],
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
input_actions,
None,
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
memory_frames = np.concatenate([memory_frames, new_frame[:,0]])
out_video = memory_frames.transpose(0,2,3,1)
out_video = np.clip(out_video, a_min=0.0, a_max=1.0)
out_video = (out_video * 255).astype(np.uint8)
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_video(out_video, temporal_video_path)
now = datetime.now()
folder_name = now.strftime("%Y-%m-%d_%H-%M-%S")
folder_path = os.path.join("/mnt/xiaozeqi/worldmem/output_material", folder_name)
os.makedirs(folder_path, exist_ok=True)
input_history += keys
data_dict = {
"input_history": input_history,
"memory_frames": memory_frames,
"self_frames": self_frames,
"self_actions": self_actions,
"self_poses": self_poses,
"self_memory_c2w": self_memory_c2w,
"self_frame_idx": self_frame_idx,
}
np.savez(os.path.join(folder_path, "data_bundle.npz"), **data_dict)
return out_video[-1], temporal_video_path, input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def reset(selected_image):
self_frames = None
self_poses = None
self_actions = None
self_memory_c2w = None
self_frame_idx = None
memory_frames = load_image_as_tensor(selected_image).numpy()[None]
input_history = ""
new_frame, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = run_interactive(memory_frames[0],
actions[0],
poses[0],
device=device,
self_frames=self_frames,
self_actions=self_actions,
self_poses=self_poses,
self_memory_c2w=self_memory_c2w,
self_frame_idx=self_frame_idx)
return input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def on_image_click(selected_image):
input_history, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx = reset(selected_image)
return input_history, selected_image, selected_image, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
def set_memory(examples_case, image_display, log_output, slider_denoising_step, slider_context_length, slider_memory_length):
if examples_case == '1':
data_bundle = np.load("/mnt/xiaozeqi/worldmem/output_material/2025-04-11_16-01-49/data_bundle.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
elif examples_case == '2':
data_bundle = np.load("/mnt/xiaozeqi/worldmem/output_material/2025-04-12_10-42-04/data_bundle.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
elif examples_case == '3':
data_bundle = np.load("/mnt/xiaozeqi/worldmem/output_material/2025-04-12_10-56-57/data_bundle.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
elif examples_case == '4':
data_bundle = np.load("/mnt/xiaozeqi/worldmem/output_material/2025-04-11_16-07-19/data_bundle.npz")
input_history = data_bundle['input_history'].item()
memory_frames = data_bundle['memory_frames']
self_frames = data_bundle['self_frames']
self_actions = data_bundle['self_actions']
self_poses = data_bundle['self_poses']
self_memory_c2w = data_bundle['self_memory_c2w']
self_frame_idx = data_bundle['self_frame_idx']
out_video = memory_frames.transpose(0,2,3,1)
out_video = np.clip(out_video, a_min=0.0, a_max=1.0)
out_video = (out_video * 255).astype(np.uint8)
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
save_video(out_video, temporal_video_path)
return input_history, out_video[-1], temporal_video_path, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx
css = """
h1 {
text-align: center;
display:block;
}
"""
def on_select(evt: gr.SelectData):
selected_index = evt.index
return examples[selected_index]
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# WORLDMEM: Long-term Consistent World Generation with Memory
"""
)
# <div style="text-align: center;">
# <!-- Public Website -->
# <a style="display:inline-block" href="https://nirvanalan.github.io/projects/GA/">
# <img src="https://img.shields.io/badge/public_website-8A2BE2">
# </a>
# <!-- GitHub Stars -->
# <a style="display:inline-block; margin-left: .5em" href="https://github.com/NIRVANALAN/GaussianAnything">
# <img src="https://img.shields.io/github/stars/NIRVANALAN/GaussianAnything?style=social">
# </a>
# <!-- Project Page -->
# <a style="display:inline-block; margin-left: .5em" href="https://nirvanalan.github.io/projects/GA/">
# <img src="https://img.shields.io/badge/project_page-blue">
# </a>
# <!-- arXiv Paper -->
# <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/XXXX.XXXXX">
# <img src="https://img.shields.io/badge/arXiv-paper-red">
# </a>
# </div>
example_actions = {"turn left + turn right": "AAAAAAAAAAAADDDDDDDDDDDD",
"turn 360 degree": "AAAAAAAAAAAAAAAAAAAAAAAA",
"turn right+go backward+look up+turn left+look down": "DDDDDDDDEEEEEEEEEESSSAAAAAAAAWWW",
"turn right+go forward+turn left": "DDDDDDDDDDDDQQQQQQQQQQQQQQQDDDDDDDDDDDD",
"turn right+look up+turn right+look down": "DDDDWWWDDDDDDDDDDDDDDDDDDDDSSS",
"put item+go backward+put item+go backward":"SSUNNWWEEEEEEEEEAAASSUNNWWEEEEEEEEE"}
selected_image = gr.State(ICE_PLAINS_IMAGE)
with gr.Row(variant="panel"):
video_display = gr.Video(autoplay=True, loop=True)
image_display = gr.Image(value=selected_image.value, interactive=False, label="Current Frame")
with gr.Row(variant="panel"):
with gr.Column(scale=2):
input_box = gr.Textbox(label="Action Sequence", placeholder="Enter action sequence here...", lines=1, max_lines=1)
log_output = gr.Textbox(label="History Log", interactive=False)
gr.Markdown("### Action sequence examples.")
with gr.Row():
buttons = []
for action_key in list(example_actions.keys())[:2]:
with gr.Column(scale=len(action_key)):
buttons.append(gr.Button(action_key))
with gr.Row():
for action_key in list(example_actions.keys())[2:4]:
with gr.Column(scale=len(action_key)):
buttons.append(gr.Button(action_key))
with gr.Row():
for action_key in list(example_actions.keys())[4:6]:
with gr.Column(scale=len(action_key)):
buttons.append(gr.Button(action_key))
with gr.Column(scale=1):
slider_denoising_step = gr.Slider(minimum=10, maximum=50, value=worldmem.sampling_timesteps, step=1, label="Denoising Steps")
slider_context_length = gr.Slider(minimum=2, maximum=10, value=worldmem.n_tokens, step=1, label="Context Length")
slider_memory_length = gr.Slider(minimum=4, maximum=16, value=worldmem.condition_similar_length, step=1, label="Memory Length")
submit_button = gr.Button("Generate")
reset_btn = gr.Button("Reset")
sampling_timesteps_state = gr.State(worldmem.sampling_timesteps)
sampling_context_length_state = gr.State(worldmem.n_tokens)
sampling_memory_length_state = gr.State(worldmem.condition_similar_length)
memory_frames = gr.State(load_image_as_tensor(selected_image.value)[None].numpy())
self_frames = gr.State()
self_actions = gr.State()
self_poses = gr.State()
self_memory_c2w = gr.State()
self_frame_idx = gr.State()
def set_action(action):
return action
# gr.Markdown("### Action sequence examples.")
for button, action_key in zip(buttons, list(example_actions.keys())):
button.click(set_action, inputs=[gr.State(value=example_actions[action_key])], outputs=input_box)
gr.Markdown("### Click on the images below to reset the sequence and generate from the new image.")
with gr.Row():
image_display_1 = gr.Image(value=SUNFLOWERS_IMAGE, interactive=False, label="Sunflower Plains")
image_display_2 = gr.Image(value=DESERT_IMAGE, interactive=False, label="Desert")
image_display_3 = gr.Image(value=SAVANNA_IMAGE, interactive=False, label="Savanna")
image_display_4 = gr.Image(value=ICE_PLAINS_IMAGE, interactive=False, label="Ice Plains")
image_display_5 = gr.Image(value=SUNFLOWERS_RAIN_IMAGE, interactive=False, label="Rainy Sunflower Plains")
image_display_6 = gr.Image(value=PLACE_IMAGE, interactive=False, label="Place")
gr.Markdown("### Click the examples below for a quick review, and continue generating based on them.")
example_case = gr.Textbox(label="Case", visible=False)
image_output = gr.Image(visible=False)
# gr.Examples(examples=example_images,
# inputs=[example_case, image_output, log_output, slider_denoising_step, slider_context_length, slider_memory_length],
# fn=set_memory,
# outputs=[log_output, image_display, video_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx],
# cache_examples=True
# )
examples = gr.Examples(
examples=example_images,
inputs=[example_case, image_output, log_output, slider_denoising_step, slider_context_length, slider_memory_length],
cache_examples=False
)
example_case.change(
fn=set_memory,
inputs=[example_case, image_output, log_output, slider_denoising_step, slider_context_length, slider_memory_length],
outputs=[log_output, image_display, video_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx]
)
gr.Markdown(
"""
## Instructions & Notes:
1. Enter an action sequence in the **"Action Sequence"** text box and click **"Generate"** to begin.
2. You can continue generation by clicking **"Generation"** again and again. Previous sequences are logged in the history panel.
3. Click **"Reset"** to clear the current sequence and start fresh.
4. Action sequences can be composed using the following keys:
- W: turn up
- S: turn down
- A: turn left
- D: turn right
- Q: move forward
- E: move backward
- N: no-op (do nothing)
- U: use item
5. Higher denoising steps produce more detailed results but take longer. 20 steps is a good balance between quality and speed. The same applies to context and memory length.
6. For faster performance, we recommend running the demo locally (~1s/frame on H100 vs ~5s on Spaces).
7. If you find this project interesting or useful, please consider giving it a ⭐️ on [GitHub]()!
8. For feedback or suggestions, feel free to open a GitHub issue or contact me directly at **[email protected]**.
"""
)
# input_box.submit(update_image_and_log, inputs=[input_box], outputs=[image_display, video_display, log_output])
submit_button.click(generate, inputs=[input_box, log_output, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx], outputs=[image_display, video_display, log_output, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
reset_btn.click(reset, inputs=[selected_image], outputs=[log_output, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_1.select(lambda: on_image_click(SUNFLOWERS_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_2.select(lambda: on_image_click(DESERT_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_3.select(lambda: on_image_click(SAVANNA_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_4.select(lambda: on_image_click(ICE_PLAINS_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_5.select(lambda: on_image_click(SUNFLOWERS_RAIN_IMAGE), outputs=[log_output, selected_image, image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
image_display_6.select(lambda: on_image_click(PLACE_IMAGE), outputs=[log_output, selected_image,image_display, memory_frames, self_frames, self_actions, self_poses, self_memory_c2w, self_frame_idx])
slider_denoising_step.change(fn=set_denoising_steps, inputs=[slider_denoising_step, sampling_timesteps_state], outputs=sampling_timesteps_state)
slider_context_length.change(fn=set_context_length, inputs=[slider_context_length, sampling_context_length_state], outputs=sampling_context_length_state)
slider_memory_length.change(fn=set_memory_length, inputs=[slider_memory_length, sampling_memory_length_state], outputs=sampling_memory_length_state)
demo.launch()