isom5240 commited on
Commit
267ce0e
·
verified ·
1 Parent(s): 1797e65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -34
app.py CHANGED
@@ -1,41 +1,35 @@
1
- # import part
2
  import streamlit as st
3
  from transformers import pipeline
4
- from PIL import Image
5
- import io
6
-
7
- # function part
8
- def generate_image_caption(image):
9
- """Generates a caption for the given image using a pre-trained model."""
10
- img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
11
-
12
- # Generate caption
13
- result = img2caption(image)
14
- return result[0]['generated_text']
15
-
16
- # text2story
17
- def text2story(text):
18
- pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
19
- story_text = pipe(text)[0]['generated_text']
20
- return story_text
21
 
22
  def main():
23
- # App title
24
- st.title("Streamlit Demo on Hugging Face")
25
-
26
- # Write some text
27
- st.write("Welcome to a demo app showcasing basic Streamlit components!")
28
-
29
- uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
30
-
31
- if uploaded_image is not None:
32
- image = Image.open(uploaded_image).convert("RGB")
33
- st.image(image, caption="Uploaded Image", use_column_width=True)
34
-
35
- # Stage 1: Image to Text
36
- st.text('Processing img2text...')
37
- image_caption = generate_image_caption(image)
38
- st.write(image_caption)
 
 
 
 
 
 
 
 
39
 
40
  if __name__ == "__main__":
41
  main()
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
+ from transformers import AutoModelForSequenceClassification
4
+ from transformers import AutoTokenizer
5
+ import torch
6
+ import numpy as np
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  def main():
9
+
10
+
11
+ st.title("yelp2024fall Test")
12
+ st.write("Enter a sentence for analysis:")
13
+
14
+ user_input = st.text_input("")
15
+ if user_input:
16
+ # Approach: AutoModel
17
+ model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2025L1",
18
+ num_labels=5)
19
+ tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
20
+
21
+ inputs = tokenizer(user_input,
22
+ padding=True,
23
+ truncation=True,
24
+ return_tensors='pt')
25
+
26
+ outputs = model2(**inputs)
27
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
28
+ predictions = predictions.cpu().detach().numpy()
29
+ # Get the index of the largest output value
30
+ max_index = np.argmax(predictions)
31
+ st.write(f"result (AutoModel) - Label: {max_index}")
32
+
33
 
34
  if __name__ == "__main__":
35
  main()