Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,35 @@
|
|
1 |
-
# import part
|
2 |
import streamlit as st
|
3 |
from transformers import pipeline
|
4 |
-
from
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
def generate_image_caption(image):
|
9 |
-
"""Generates a caption for the given image using a pre-trained model."""
|
10 |
-
img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
11 |
-
|
12 |
-
# Generate caption
|
13 |
-
result = img2caption(image)
|
14 |
-
return result[0]['generated_text']
|
15 |
-
|
16 |
-
# text2story
|
17 |
-
def text2story(text):
|
18 |
-
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
|
19 |
-
story_text = pipe(text)[0]['generated_text']
|
20 |
-
return story_text
|
21 |
|
22 |
def main():
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoModelForSequenceClassification
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def main():
|
9 |
+
|
10 |
+
|
11 |
+
st.title("yelp2024fall Test")
|
12 |
+
st.write("Enter a sentence for analysis:")
|
13 |
+
|
14 |
+
user_input = st.text_input("")
|
15 |
+
if user_input:
|
16 |
+
# Approach: AutoModel
|
17 |
+
model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2025L1",
|
18 |
+
num_labels=5)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
20 |
+
|
21 |
+
inputs = tokenizer(user_input,
|
22 |
+
padding=True,
|
23 |
+
truncation=True,
|
24 |
+
return_tensors='pt')
|
25 |
+
|
26 |
+
outputs = model2(**inputs)
|
27 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
28 |
+
predictions = predictions.cpu().detach().numpy()
|
29 |
+
# Get the index of the largest output value
|
30 |
+
max_index = np.argmax(predictions)
|
31 |
+
st.write(f"result (AutoModel) - Label: {max_index}")
|
32 |
+
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
main()
|