demo_test / fastchat /protocol /api_protocol.py
yuantao-infini-ai's picture
Upload 136 files
7472549 verified
raw
history blame
4.68 kB
from typing import Literal, Optional, List, Dict, Any, Union
import time
import shortuuid
from pydantic import BaseModel, Field
class ErrorResponse(BaseModel):
object: str = "error"
message: str
code: int
class ModelPermission(BaseModel):
id: str = Field(default_factory=lambda: f"modelperm-{shortuuid.random()}")
object: str = "model_permission"
created: int = Field(default_factory=lambda: int(time.time()))
allow_create_engine: bool = False
allow_sampling: bool = True
allow_logprobs: bool = True
allow_search_indices: bool = True
allow_view: bool = True
allow_fine_tuning: bool = False
organization: str = "*"
group: Optional[str] = None
is_blocking: str = False
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "fastchat"
root: Optional[str] = None
parent: Optional[str] = None
permission: List[ModelPermission] = []
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class APIChatCompletionRequest(BaseModel):
model: str
messages: Union[str, List[Dict[str, str]]]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
top_k: Optional[int] = -1
n: Optional[int] = 1
max_tokens: Optional[int] = None
stop: Optional[Union[str, List[str]]] = None
stream: Optional[bool] = False
user: Optional[str] = None
repetition_penalty: Optional[float] = 1.0
frequency_penalty: Optional[float] = 0.0
presence_penalty: Optional[float] = 0.0
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Optional[Literal["stop", "length"]] = None
class ChatCompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{shortuuid.random()}")
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
class DeltaMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]] = None
class ChatCompletionStreamResponse(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-{shortuuid.random()}")
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
class APITokenCheckRequestItem(BaseModel):
model: str
prompt: str
max_tokens: int
class APITokenCheckRequest(BaseModel):
prompts: List[APITokenCheckRequestItem]
class APITokenCheckResponseItem(BaseModel):
fits: bool
tokenCount: int
contextLength: int
class APITokenCheckResponse(BaseModel):
prompts: List[APITokenCheckResponseItem]
class CompletionRequest(BaseModel):
model: str
prompt: Union[str, List[Any]]
suffix: Optional[str] = None
temperature: Optional[float] = 0.7
n: Optional[int] = 1
max_tokens: Optional[int] = 16
stop: Optional[Union[str, List[str]]] = None
stream: Optional[bool] = False
top_p: Optional[float] = 1.0
top_k: Optional[int] = -1
logprobs: Optional[int] = None
echo: Optional[bool] = False
presence_penalty: Optional[float] = 0.0
frequency_penalty: Optional[float] = 0.0
user: Optional[str] = None
class CompletionResponseChoice(BaseModel):
index: int
text: str
logprobs: Optional[int] = None
finish_reason: Optional[Literal["stop", "length"]] = None
class CompletionResponse(BaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{shortuuid.random()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionResponseStreamChoice(BaseModel):
index: int
text: str
logprobs: Optional[float] = None
finish_reason: Optional[Literal["stop", "length"]] = None
class CompletionStreamResponse(BaseModel):
id: str = Field(default_factory=lambda: f"cmpl-{shortuuid.random()}")
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseStreamChoice]