Spaces:
Runtime error
Runtime error
| import os | |
| import yaml | |
| import torch | |
| import argparse | |
| import numpy as np | |
| import gradio as gr | |
| from PIL import Image | |
| from copy import deepcopy | |
| from torch.nn.parallel import DataParallel, DistributedDataParallel | |
| from huggingface_hub import hf_hub_download | |
| from gradio_imageslider import ImageSlider | |
| ## local code | |
| from models import seemore | |
| def dict2namespace(config): | |
| namespace = argparse.Namespace() | |
| for key, value in config.items(): | |
| if isinstance(value, dict): | |
| new_value = dict2namespace(value) | |
| else: | |
| new_value = value | |
| setattr(namespace, key, new_value) | |
| return namespace | |
| def load_img (filename, norm=True,): | |
| img = np.array(Image.open(filename).convert("RGB")) | |
| if norm: | |
| img = img / 255. | |
| img = img.astype(np.float32) | |
| return img | |
| def process_img (image): | |
| img = np.array(image) | |
| img = img / 255. | |
| img = img.astype(np.float32) | |
| y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| x_hat = model(y) | |
| restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy() | |
| restored_img = np.clip(restored_img, 0. , 1.) | |
| restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8 | |
| #return Image.fromarray(restored_img) # | |
| return (image, Image.fromarray(restored_img)) | |
| def load_network(net, load_path, strict=True, param_key='params'): | |
| if isinstance(net, (DataParallel, DistributedDataParallel)): | |
| net = net.module | |
| load_net = torch.load(load_path, map_location=lambda storage, loc: storage) | |
| if param_key is not None: | |
| if param_key not in load_net and 'params' in load_net: | |
| param_key = 'params' | |
| load_net = load_net[param_key] | |
| # remove unnecessary 'module.' | |
| for k, v in deepcopy(load_net).items(): | |
| if k.startswith('module.'): | |
| load_net[k[7:]] = v | |
| load_net.pop(k) | |
| net.load_state_dict(load_net, strict=strict) | |
| CONFIG = "configs/eval_seemore_t_x4.yml" | |
| hf_hub_download(repo_id="eduardzamfir/SeemoRe-T", filename="SeemoRe_T_X4.pth", local_dir="./") | |
| MODEL_NAME = "SeemoRe_T_X4.pth" | |
| # parse config file | |
| with open(os.path.join(CONFIG), "r") as f: | |
| config = yaml.safe_load(f) | |
| cfg = dict2namespace(config) | |
| device = torch.device("cpu") | |
| model = seemore.SeemoRe(scale=cfg.model.scale, in_chans=cfg.model.in_chans, | |
| num_experts=cfg.model.num_experts, num_layers=cfg.model.num_layers, embedding_dim=cfg.model.embedding_dim, | |
| img_range=cfg.model.img_range, use_shuffle=cfg.model.use_shuffle, global_kernel_size=cfg.model.global_kernel_size, | |
| recursive=cfg.model.recursive, lr_space=cfg.model.lr_space, topk=cfg.model.topk) | |
| model = model.to(device) | |
| print ("IMAGE MODEL CKPT:", MODEL_NAME) | |
| load_network(model, MODEL_NAME, strict=True, param_key='params') | |
| title = "See More Details" | |
| description = ''' ### See More Details: Efficient Image Super-Resolution by Experts Mining | |
| #### [Eduard Zamfir<sup>1</sup>](https://eduardzamfir.github.io), [Zongwei Wu<sup>1*</sup>](https://sites.google.com/view/zwwu/accueil), [Nancy Mehta<sup>1</sup>](https://scholar.google.com/citations?user=WwdYdlUAAAAJ&hl=en&oi=ao), [Yulun Zhang<sup>2,3*</sup>](http://yulunzhang.com/) and [Radu Timofte<sup>1</sup>](https://www.informatik.uni-wuerzburg.de/computervision/) | |
| #### **<sup>1</sup> University of Würzburg, Germany - <sup>2</sup> Shanghai Jiao Tong University, China - <sup>3</sup> ETH Zürich, Switzerland** | |
| #### **<sup>*</sup> Corresponding authors** | |
| <details> | |
| <summary> <b> Abstract</b> (click me to read)</summary> | |
| <p> | |
| Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce **S**eemo**R**e, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of **see more**, allowing our model to achieve an optimal performance with minimal computational costs in efficient settings | |
| </p> | |
| </details> | |
| <br> | |
| <code> | |
| @inproceedings{zamfir2024details, | |
| title={See More Details: Efficient Image Super-Resolution by Experts Mining}, | |
| author={Eduard Zamfir and Zongwei Wu and Nancy Mehta and Yulun Zhang and Radu Timofte}, | |
| booktitle={International Conference on Machine Learning}, | |
| year={2024}, | |
| organization={PMLR} | |
| } | |
| </code> | |
| <br> | |
| ''' | |
| article = "<p style='text-align: center'><a href='https://eduardzamfir.github.io/seemore' target='_blank'>See More Details: Efficient Image Super-Resolution by Experts Mining</a></p>" | |
| #### Image,Prompts examples | |
| examples = [['images/img002x4.png'], | |
| ['images/img003x4.png'], | |
| ['images/img004x4.png'], | |
| ['images/img035x4.png'], | |
| ['images/img053x4.png'], | |
| ['images/img064x4.png'], | |
| ['images/img083x4.png'], | |
| ['images/img092x4.png'], | |
| ] | |
| css = """ | |
| .image-frame img, .image-container img { | |
| width: auto; | |
| height: auto; | |
| max-width: none; | |
| } | |
| """ | |
| demo = gr.Interface( | |
| fn=process_img, | |
| inputs=[gr.Image(type="pil", label="Input", value="images/img002x4.png"),], | |
| outputs=ImageSlider(label="Super-Resolved Image", type="pil"), #[gr.Image(type="pil", label="Ouput", min_width=500)], | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples, | |
| css=css, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |