Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
from PIL import Image
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
# No image uploaded, generate text only
|
10 |
-
return generate_text(description)
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
'Authorization': f'Bearer {os.getenv("API_KEY")}'
|
19 |
-
}
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
'max_tokens': 10000,
|
24 |
-
'model': os.getenv("MODEL")
|
25 |
-
}
|
26 |
|
27 |
-
|
28 |
-
data = json.loads(response.text)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
return command
|
33 |
-
elif 'error' in data:
|
34 |
-
error_message = data['error']['message']
|
35 |
-
return f'Ошибка: {error_message}'
|
36 |
-
else:
|
37 |
-
return f'Не удалось сгенерировать текст. {data}'
|
38 |
-
|
39 |
-
def generate_text_with_image(description, image):
|
40 |
-
# Preprocess image
|
41 |
-
image = Image.open(image).resize((224, 224))
|
42 |
-
image = image.convert('RGB')
|
43 |
-
image = image.tobytes()
|
44 |
-
|
45 |
-
# Convert image to base64 encoding
|
46 |
-
image_base64 = base64.b64encode(image).decode('utf-8')
|
47 |
-
|
48 |
-
headers = {
|
49 |
-
'Content-Type': 'application/json',
|
50 |
-
'Authorization': f'Bearer {os.getenv("API_KEY")}'
|
51 |
-
}
|
52 |
-
|
53 |
-
payload = {
|
54 |
-
'prompt': f'{description}',
|
55 |
-
'max_tokens': 10000,
|
56 |
-
'model': os.getenv("MODEL"),
|
57 |
-
'input_image': image_base64
|
58 |
-
}
|
59 |
-
|
60 |
-
response = requests.post(os.getenv("BASE_URL"), headers=headers, json=payload)
|
61 |
-
data = json.loads(response.text)
|
62 |
-
|
63 |
-
if 'choices' in data and len(data['choices']) > 0:
|
64 |
-
command = data['choices'][0]['text'].strip()
|
65 |
-
return command
|
66 |
-
elif 'error' in data:
|
67 |
-
error_message = data['error']['message']
|
68 |
-
return f'Ошибка: {error_message}'
|
69 |
-
else:
|
70 |
-
return f'Не удалось сгенерировать текст. {data}'
|
71 |
-
|
72 |
-
iface = gr.Interface(fn=generate, inputs=[
|
73 |
-
gr.Textbox(label="Запрос"),
|
74 |
-
gr.File(label="Изображение")
|
75 |
-
], outputs=gr.Textbox(label="Ответ"), title="GPT")
|
76 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import huggingface
|
|
|
|
|
|
|
3 |
|
4 |
+
# Загружаем модель
|
5 |
+
model = huggingface.transformers.AutoModelForQuestionAnswering.from_pretrained("facebook/bart-base")
|
|
|
|
|
6 |
|
7 |
+
# Функция для генерации ответа
|
8 |
+
def generate_answer(image, prompt):
|
9 |
+
# Получаем текст из изображения
|
10 |
+
text = huggingface.vision.ImageCaptioner.from_pretrained("facebook/bart-base").generate(image)
|
11 |
|
12 |
+
# Если был указан дополнительный prompt, добавляем его к тексту
|
13 |
+
if prompt:
|
14 |
+
text += f" {prompt}"
|
|
|
|
|
15 |
|
16 |
+
# Генерируем ответ на вопрос
|
17 |
+
answer = model.generate(text=text, max_length=100, do_sample=True)
|
|
|
|
|
|
|
18 |
|
19 |
+
return answer
|
|
|
20 |
|
21 |
+
# Создаем интерфейс gradio
|
22 |
+
gr.Interface(generate_answer, inputs=[gr.Image(), gr.Text()], outputs=gr.Text(), title="Решение задач по фото")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|