File size: 6,661 Bytes
434d48f
 
525a9cd
 
 
47df986
525a9cd
 
47df986
525a9cd
434d48f
 
525a9cd
 
434d48f
47df986
525a9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434d48f
860e1cc
2eab57a
4e4e6af
 
 
 
860e1cc
 
4e4e6af
e8ee3dc
 
860e1cc
 
 
3639967
2eab57a
 
 
 
 
 
 
525a9cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr

from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation

feature_extractor = SegformerFeatureExtractor.from_pretrained(
     "nvidia/segformer-b0-finetuned-ade-512-512"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
     "nvidia/segformer-b0-finetuned-ade-512-512"
)

def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [116, 116, 116],
        [47, 157, 39],
        [217, 65, 140],
        [255, 255, 255],
        [255, 178, 245],
        [61, 183, 204],
        [153, 0, 76],
        [71, 102, 0],
        [255, 167, 167],
        [25, 25, 25],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
        [92, 209, 229],
        [153, 56, 0],
        [128, 65, 217],
        [53, 53, 53],
        [0, 84, 255],
        [171, 242, 0],
        [255, 0, 221],
        [255, 228, 0],
    ]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')
    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig

def sepia(input_img):
    input_img = Image.fromarray(input_img)

    inputs = feature_extractor(images=input_img, return_tensors="tf")
    outputs = model(**inputs)
    logits = outputs.logits

    logits = tf.transpose(logits, [0, 2, 3, 1])
    logits = tf.image.resize(
        logits, input_img.size[::-1]
    )  # We reverse the shape of `image` because `image.size` returns width and height.
    seg = tf.math.argmax(logits, axis=-1)[0]

    color_seg = np.zeros(
        (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
    )  # height, width, 3
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    # Show image + mask
    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig



demo = gr.Interface(fn=sepia,
                    inputs=gr.Image(shape=(512, 512)),
                    outputs=['plot'],
                    examples=["image1.jpg", "image2.jpg", "image3.jpg", "image4.jpg"],
                    allow_flagging='never'
)

demo.launch()
import gradio as gr

def update(name):
    return f"Welcome to Gradio, {name}!"
with gr.Blocks() as visit:
    gr.Markdown("Start typing below and then click **방명록** to see the output.")
    with gr.Row():
        inp = gr.Textbox(placeholder="방문을 환영합니다. 성함이 어떻게 되세요?")
        out = gr.Textbox()
    btn = gr.Button("방명록")
    btn.click(fn=update, inputs=inp, outputs=out)

demo.launch()