|
import gradio as gr |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
model = GPT2LMHeadModel.from_pretrained("wormgpt") |
|
tokenizer = GPT2Tokenizer.from_pretrained("wormgpt") |
|
|
|
def generate_text(prompt, max_length=50): |
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
def predict(input_text): |
|
output = generate_text(input_text) |
|
return output |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), |
|
outputs="text", |
|
title="WormGPT Text Generation", |
|
description="Generate text using the WormGPT model." |
|
) |
|
|
|
iface.launch() |