|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
import gradio as gr |
|
|
|
|
|
model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
def generate_code(prompt, max_length=200): |
|
full_prompt = f"Generate Python code for {prompt}:```python\n" |
|
inputs = tokenizer.encode(full_prompt, return_tensors="pt") |
|
|
|
output = model.generate( |
|
inputs, |
|
max_length=max_length, |
|
num_return_sequences=1, |
|
temperature=0.7, |
|
pad_token_id=tokenizer.pad_token_id |
|
) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=False) |
|
|
|
|
|
start = generated_text.find("```python") + len("```python") |
|
end = generated_text.find("```", start) |
|
if end == -1: |
|
end = len(generated_text) |
|
code = generated_text[start:end].strip() |
|
|
|
return code |
|
|
|
def predict(input_text): |
|
output = generate_code(input_text) |
|
return output |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your code generation prompt here..."), |
|
outputs="text", |
|
title="Code Generation with GPT2", |
|
description="Generate Python code based on your input prompt." |
|
) |
|
|
|
iface.launch() |