import torch from mamba_block import MambaBlock from mamba_config import MambaConfig from mamba_layer import MambaLayer # 創建一個Mamba配置 config = MambaConfig( hidden_size=512, num_layers=6, num_heads=8, intermediate_size=2048, max_position_embeddings=1024, rms_norm=False, residual_in_fp32=False, fused_add_norm=False, ) # 創建一個Mamba模型 class MambaModel(torch.nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = torch.nn.ModuleList([MambaBlock(config, MambaLayer) for _ in range(config.num_layers)]) self.norm = torch.nn.LayerNorm(config.hidden_size) def forward(self, hidden_states: torch.Tensor): residual = None for layer in self.layers: hidden_states, residual = layer(hidden_states, residual) hidden_states = self.norm(hidden_states + residual if residual is not None else hidden_states) return hidden_states # 創建模型實例 mamba_model = MambaModel(config) mamba_model.eval() # Function to generate text from a given prompt using the Mamba model def generate_text(prompt, model, max_length=50): # 這裡假設你的prompt已經被轉換為嵌入向量 hidden_states = torch.randn(1, len(prompt), config.hidden_size) # 假設你的輸入序列長度是len(prompt) with torch.no_grad(): output = model(hidden_states) # 這裡你需要將模型輸出轉換為可讀的文本 # 這只是一個示例,實際上你可能需要一個解碼器來將輸出轉換為文本 generated_text = "這裡是生成的文本" # 這裡應該是你的實際生成的文本 return generated_text # Function to generate text from a given prompt using the Mamba model def generate_uncensored_text(prompt, max_length=50): mamba_text = generate_text(prompt, mamba_model, max_length) return mamba_text # Example usage prompt = "I want to generate some uncensored text." uncensored_text = generate_uncensored_text(prompt) print(uncensored_text)