Spaces:
Running
Running
File size: 15,794 Bytes
1b44660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import { WorkflowEntrypoint, type WorkflowEvent, type WorkflowStep, type WorkflowStepConfig } from 'cloudflare:workers';
import {
$data_sources,
$ingested_items,
and,
eq,
gte,
inArray,
isNull,
type DataSourceConfigWrapper,
} from '@meridian/database';
import { err, ok } from 'neverthrow';
import { ResultAsync } from 'neverthrow';
import type { Env } from '../index';
import { getArticleWithBrowser, getArticleWithFetch } from '../lib/articleFetchers';
import { createEmbeddings } from '../lib/embeddings';
import { Logger } from '../lib/logger';
import { DomainRateLimiter } from '../lib/rateLimiter';
import { getDb } from '../lib/utils';
import type { z } from 'zod';
import { getArticleRepresentationPrompt } from '../prompts/articleRepresentation.prompt';
import { createGoogleGenerativeAI, google } from '@ai-sdk/google';
import { generateText } from 'ai';
const dbStepConfig: WorkflowStepConfig = {
retries: { limit: 3, delay: '1 second', backoff: 'linear' },
timeout: '5 seconds',
};
/**
* Parameters for the ProcessArticles workflow
*/
export type ProcessArticlesParams = { ingested_item_ids: number[] };
const workflowLogger = new Logger({ workflow: 'ProcessArticles' });
/**
* Workflow that processes articles by fetching their content, extracting text with Readability,
* generating embeddings, and storing the results.
*
* This workflow handles:
* - Source type dispatching (RSS, etc.)
* - Fetching article content with appropriate rate limiting
* - Domain-specific fetching strategies (browser vs. simple fetch)
* - Mozilla Readability-based content extraction
* - 10KB threshold for content storage (DB vs R2)
* - Embedding generation for search
* - Persistent storage in database and object storage
* - Error handling and status tracking
*/
export class ProcessIngestedItemWorkflow extends WorkflowEntrypoint<Env, ProcessArticlesParams> {
/**
* Main workflow execution method that processes a batch of articles
*
* @param _event Workflow event containing article IDs to process
* @param step Workflow step context for creating durable operations
*/
async run(_event: WorkflowEvent<ProcessArticlesParams>, step: WorkflowStep) {
const env = this.env;
const db = getDb(env.HYPERDRIVE);
const google = createGoogleGenerativeAI({
apiKey: env.GEMINI_API_KEY,
baseURL: env.GEMINI_BASE_URL || 'https://generativelanguage.googleapis.com/v1beta',
});
const logger = workflowLogger.child({
workflow_id: _event.instanceId,
initial_article_count: _event.payload.ingested_item_ids.length,
});
logger.info('Starting workflow run');
const articles = await step.do('get articles', dbStepConfig, async () =>
db
.select({
id: $ingested_items.id,
url: $ingested_items.url_to_original,
title: $ingested_items.display_title,
publishedAt: $ingested_items.published_at,
sourceType: $data_sources.source_type,
config: $data_sources.config,
})
.from($ingested_items)
.innerJoin($data_sources, eq($ingested_items.data_source_id, $data_sources.id))
.where(
and(
// only process articles that haven't been processed yet
isNull($ingested_items.processed_at),
// only process articles that have a publish date in the last 48 hours
gte($ingested_items.published_at, new Date(new Date().getTime() - 48 * 60 * 60 * 1000)),
// only articles that have not failed
isNull($ingested_items.fail_reason),
// MAIN FILTER: only articles that need to be processed
inArray($ingested_items.id, _event.payload.ingested_item_ids)
)
)
);
const fetchLogger = logger.child({ articles_count: articles.length });
fetchLogger.info('Fetching article contents');
// Create rate limiter with article processing specific settings
const rateLimiter = new DomainRateLimiter<{
id: number;
url: string;
title: string | null;
publishedAt: Date | null;
sourceType: 'RSS';
config: z.infer<typeof DataSourceConfigWrapper>;
}>({ maxConcurrent: 8, globalCooldownMs: 1_000, domainCooldownMs: 5_000 });
// Process articles with rate limiting and source type dispatcher
const articlesToProcess: Array<{
id: number;
title: string;
url: string;
contentBodyText: string;
contentBodyR2Key: string | null;
wordCount: number;
publishedTime?: string;
}> = [];
const articleResults = await rateLimiter.processBatch(articles, step, async article => {
const scrapeLogger = fetchLogger.child({ article_id: article.id, source_type: article.sourceType });
// Skip PDFs immediately
if (article.url.toLowerCase().endsWith('.pdf')) {
scrapeLogger.info('Skipping PDF article');
// Update the article status to mark it as skipped PDF
await step.do(`mark PDF article ${article.id} as skipped`, dbStepConfig, async () => {
return db
.update($ingested_items)
.set({
status: 'SKIPPED_PDF',
processed_at: new Date(),
fail_reason: 'PDF article - cannot process',
})
.where(eq($ingested_items.id, article.id));
});
return { id: article.id, success: false, error: 'pdf' };
}
// Dispatcher based on source type
if (article.sourceType === 'RSS') {
return await this._processRSSArticle(article, scrapeLogger, step, env);
}
scrapeLogger.error('Unsupported source type', { source_type: article.sourceType });
return { id: article.id, success: false, error: `Unsupported source type: ${article.sourceType}` };
});
// Handle results
let successCount = 0;
let failCount = 0;
const dbUpdateLogger = fetchLogger.child({ results_count: articleResults.length });
for (const result of articleResults) {
const articleLogger = dbUpdateLogger.child({ article_id: result.id });
if (result.success && 'processedContent' in result) {
successCount++;
articlesToProcess.push({
id: result.id,
title: result.processedContent.title,
url: result.processedContent.url,
contentBodyText: result.processedContent.contentBodyText,
contentBodyR2Key: result.processedContent.contentBodyR2Key,
wordCount: result.processedContent.wordCount,
publishedTime: result.processedContent.publishedTime,
});
await step.do(`update db for successful article ${result.id}`, dbStepConfig, async () => {
articleLogger.debug('Updating article status to CONTENT_FETCHED');
return db
.update($ingested_items)
.set({
status: 'PROCESSED',
usedBrowser: result.used_browser,
})
.where(eq($ingested_items.id, result.id));
});
} else {
failCount++;
// update failed articles in DB with the fail reason
await step.do(`update db for failed article ${result.id}`, dbStepConfig, async () => {
const failReason = result.error ? String(result.error) : 'Unknown error';
const status = result.error?.includes('render') ? 'FAILED_RENDER' : 'FAILED_FETCH';
articleLogger.warn('Marking article as failed during content fetch', {
fail_reason: failReason,
status,
});
return db
.update($ingested_items)
.set({
processed_at: new Date(),
fail_reason: failReason,
status: status,
})
.where(eq($ingested_items.id, result.id));
});
}
}
const processingLogger = logger.child({
processing_batch_size: articlesToProcess.length,
fetch_success_count: successCount,
fetch_fail_count: failCount,
});
processingLogger.info('Processing articles with content extraction and embeddings');
// process articles for embeddings
const analysisResults = await Promise.allSettled(
articlesToProcess.map(async article => {
const articleLogger = processingLogger.child({ article_id: article.id });
articleLogger.info('Generating article representation');
// Analyze article
const articleRepresentation = await step.do(
`analyze article ${article.id}`,
{ retries: { limit: 3, delay: '2 seconds', backoff: 'exponential' }, timeout: '1 minute' },
async () => {
const response = await generateText({
model: google('gemini-2.0-flash-001'),
temperature: 0,
prompt: getArticleRepresentationPrompt(article.title, article.url, article.contentBodyText),
});
return response.text;
}
);
articleLogger.info('Embedding article representation');
// Generate embeddings (no need to upload to R2 as it's already handled in processing)
const embeddingResult = await step.do(`generate embeddings for article ${article.id}`, async () => {
articleLogger.info('Generating embeddings');
const embeddings = await createEmbeddings(env, [articleRepresentation]);
if (embeddings.isErr()) throw embeddings.error;
return embeddings.value[0];
});
// handle results in a separate step
await step.do(`update article ${article.id} status`, async () =>
db
.update($ingested_items)
.set({
processed_at: new Date(),
display_title: article.title,
content_body_text: article.contentBodyText,
content_body_r2_key: article.contentBodyR2Key,
embedding: embeddingResult,
embedding_text: articleRepresentation,
status: 'PROCESSED',
word_count: article.wordCount,
})
.where(eq($ingested_items.id, article.id))
);
articleLogger.info('Article processed successfully');
return { id: article.id, success: true };
})
);
const successfulAnalyses = analysisResults.filter(
(result): result is PromiseFulfilledResult<{ id: number; success: true }> =>
result.status === 'fulfilled' && result.value.success
).length;
const failedAnalyses = analysisResults.filter(
result => result.status === 'rejected' || (result.status === 'fulfilled' && !result.value.success)
).length;
logger.info('Workflow completed', {
total_articles: articlesToProcess.length,
successful_analyses: successfulAnalyses,
failed_analyses: failedAnalyses,
});
}
/**
* Processes RSS articles by fetching HTML content and using Readability for extraction
*/
private async _processRSSArticle(
article: {
id: number;
url: string;
title: string | null;
publishedAt: Date | null;
sourceType: 'RSS';
config: z.infer<typeof DataSourceConfigWrapper>;
},
scrapeLogger: Logger,
step: WorkflowStep,
env: Env
) {
scrapeLogger.info('Processing RSS article');
// This will contain either a successful result or a controlled error
// biome-ignore lint/suspicious/noImplicitAnyLet: <explanation>
let result;
try {
result = await step.do(
`scrape RSS article ${article.id}`,
{ retries: { limit: 3, delay: '2 second', backoff: 'exponential' }, timeout: '2 minutes' },
async () => {
// During retries, let errors bubble up naturally
if (article.config.config.rss_paywall === true) {
scrapeLogger.info('Using browser to fetch article (tricky domain)');
const browserResult = await getArticleWithBrowser(env, article.url);
if (browserResult.isErr()) throw browserResult.error.error;
return {
id: article.id,
success: true,
parsedContent: browserResult.value,
used_browser: true,
};
}
scrapeLogger.info('Attempting fetch-first approach');
const fetchResult = await getArticleWithFetch(article.url);
if (!fetchResult.isErr()) {
return {
id: article.id,
success: true,
parsedContent: fetchResult.value,
used_browser: false,
};
}
// Fetch failed, try browser with jitter
scrapeLogger.info('Fetch failed, falling back to browser');
const jitterTime = Math.random() * 2500 + 500;
await step.sleep('jitter', jitterTime);
const browserResult = await getArticleWithBrowser(env, article.url);
if (browserResult.isErr()) throw browserResult.error.error;
return {
id: article.id,
success: true,
parsedContent: browserResult.value,
used_browser: true,
};
}
);
} catch (error) {
scrapeLogger.error(
'Failed to scrape RSS article',
{ error: error instanceof Error ? error.message : String(error) },
error instanceof Error ? error : new Error(String(error))
);
// After all retries failed, return a structured error
return {
id: article.id,
success: false,
error: error instanceof Error ? error.message : String(error) || 'exhausted all retries',
};
}
// Apply 10KB threshold logic
const CONTENT_SIZE_THRESHOLD = 10240; // 10KB
const fullText = result.parsedContent.text;
const wordCount = fullText.split(' ').length;
let contentBodyText: string;
let contentBodyR2Key: string | null = null;
if (fullText.length <= CONTENT_SIZE_THRESHOLD) {
// Store full text in DB
contentBodyText = fullText;
} else {
// Store first 10KB in DB with truncation indicator, full text in R2
contentBodyText = `${fullText.substring(0, CONTENT_SIZE_THRESHOLD)}...`;
// Store full content in R2
const date = result.parsedContent.publishedTime ? new Date(result.parsedContent.publishedTime) : new Date();
const r2Key = `processed_content/${date.getUTCFullYear()}/${date.getUTCMonth() + 1}/${date.getUTCDate()}/${article.id}.txt`;
try {
await env.ARTICLES_BUCKET.put(r2Key, fullText);
contentBodyR2Key = r2Key;
scrapeLogger.info('Stored full content in R2', { r2_key: r2Key, content_length: fullText.length });
} catch (r2Error) {
scrapeLogger.error('Failed to store content in R2', { r2_key: r2Key }, r2Error as Error);
// Continue with truncated content in DB only
}
}
return {
id: article.id,
success: true,
processedContent: {
title: result.parsedContent.title,
contentBodyText,
contentBodyR2Key,
url: article.url,
wordCount,
publishedTime: result.parsedContent.publishedTime,
},
used_browser: result.used_browser,
};
}
}
/**
* Starts a new ProcessArticles workflow instance with the provided article IDs
*
* @param env Application environment
* @param params Parameters containing the list of article IDs to process
* @returns Result containing either the created workflow or an error
*/
export async function startProcessArticleWorkflow(env: Env, params: ProcessArticlesParams) {
const workflow = await ResultAsync.fromPromise(
env.PROCESS_INGESTED_ITEM.create({ id: crypto.randomUUID(), params }),
e => (e instanceof Error ? e : new Error(String(e)))
);
if (workflow.isErr()) return err(workflow.error);
return ok(workflow.value);
}
|