yuntian-deng commited on
Commit
4e3290f
·
verified ·
1 Parent(s): a1d40d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -57,7 +57,8 @@ def update_fields(url_or_id):
57
  return '', '', ''
58
  print (arxiv_id)
59
  title, authors, abstract = fetch_arxiv_data(arxiv_id)
60
- return title, authors, abstract
 
61
 
62
  def normalize_spaces(text):
63
  return re.sub(r'\s+', ' ', text).strip()
@@ -84,7 +85,7 @@ def model_inference(title, authors, abstract):
84
  score = probs[1].item()
85
  return score
86
 
87
- def predict(title, authors, abstract, _):
88
  # Your model prediction logic here
89
  score = model_inference(title, authors, abstract)
90
 
@@ -96,7 +97,7 @@ def predict(title, authors, abstract, _):
96
 
97
  result = f"Your score: {score:.2f}.\nFor papers with score>={threshold:.2f}, {precision * 100:.2f}% are selected by AK.\nFor papers selected by AK, {recall * 100:.2f}% have score>={threshold:.2f}"
98
 
99
- return score, result
100
 
101
  example_title = "WildChat: 1M ChatGPT Interaction Logs in the Wild"
102
  example_authors = "Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, Yuntian Deng"
@@ -107,18 +108,21 @@ with gr.Blocks() as demo:
107
  author_box = gr.Textbox(label="Authors (separated by comma)", placeholder="Enter authors (separated by comma)", value=example_authors)
108
  abstract_box = gr.TextArea(label="Abstract", placeholder="Enter abstract", value=example_abstract)
109
  arxiv_box = gr.Textbox(label="[Optional] Autofill using arXiv URL/ID", placeholder="[Optional] Autofill using arXiv URL/ID")
 
 
 
110
  #arxiv_box.input(update_fields, inputs=[arxiv_box], outputs=[title_box, author_box, abstract_box])
111
 
112
  iface = gr.Interface(
113
  fn=predict,
114
- inputs=[title_box, author_box, abstract_box, arxiv_box],
115
- outputs=[gr.Textbox(label="Predicted Score"), gr.Textbox(label="Predicted Selection Probability")],
 
116
  title="Paper Selection Prediction",
117
  description="Predict if @_akhaliq will select your paper into Hugging Face papers. Enter the title, authors, and abstract of your paper, or enter an arXiv URL/ID.",
118
  live=False,
119
  concurrency_limit=1
120
  )
121
- autofill_btn = gr.Button("Autofill using arXiv")
122
- autofill_btn.click(update_fields, inputs=[arxiv_box], outputs=[title_box, author_box, abstract_box], concurrency_limit=1)
123
 
124
  demo.queue(max_size=20).launch()
 
57
  return '', '', ''
58
  print (arxiv_id)
59
  title, authors, abstract = fetch_arxiv_data(arxiv_id)
60
+ output = predict(title, authors, abstract)
61
+ return title, authors, abstract, output
62
 
63
  def normalize_spaces(text):
64
  return re.sub(r'\s+', ' ', text).strip()
 
85
  score = probs[1].item()
86
  return score
87
 
88
+ def predict(title, authors, abstract):
89
  # Your model prediction logic here
90
  score = model_inference(title, authors, abstract)
91
 
 
97
 
98
  result = f"Your score: {score:.2f}.\nFor papers with score>={threshold:.2f}, {precision * 100:.2f}% are selected by AK.\nFor papers selected by AK, {recall * 100:.2f}% have score>={threshold:.2f}"
99
 
100
+ return result
101
 
102
  example_title = "WildChat: 1M ChatGPT Interaction Logs in the Wild"
103
  example_authors = "Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, Yuntian Deng"
 
108
  author_box = gr.Textbox(label="Authors (separated by comma)", placeholder="Enter authors (separated by comma)", value=example_authors)
109
  abstract_box = gr.TextArea(label="Abstract", placeholder="Enter abstract", value=example_abstract)
110
  arxiv_box = gr.Textbox(label="[Optional] Autofill using arXiv URL/ID", placeholder="[Optional] Autofill using arXiv URL/ID")
111
+ output_box = gr.Textbox(label="Predicted Selection Probability")
112
+ autofill_btn = gr.Button("Autofill using arXiv")
113
+ autofill_btn.click(update_fields, inputs=[arxiv_box], outputs=[title_box, author_box, abstract_box, output_box], concurrency_limit=1)
114
  #arxiv_box.input(update_fields, inputs=[arxiv_box], outputs=[title_box, author_box, abstract_box])
115
 
116
  iface = gr.Interface(
117
  fn=predict,
118
+ inputs=[title_box, author_box, abstract_box],
119
+ outputs=[output_box],
120
+ submit_btn=gr.Button("Predict", variant="primary")
121
  title="Paper Selection Prediction",
122
  description="Predict if @_akhaliq will select your paper into Hugging Face papers. Enter the title, authors, and abstract of your paper, or enter an arXiv URL/ID.",
123
  live=False,
124
  concurrency_limit=1
125
  )
126
+
 
127
 
128
  demo.queue(max_size=20).launch()