File size: 6,688 Bytes
c54f817
8435838
c575e18
89b9813
8435838
89b9813
 
 
e62ac65
e8de28c
a677593
b916cdf
 
 
8435838
 
 
 
 
 
 
c575e18
89b9813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a677593
c7afaf1
e8de28c
 
3208a74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b9813
a677593
3208a74
 
a677593
 
 
3208a74
 
 
 
bfa85db
3208a74
 
 
33a9da7
bfa85db
a677593
 
704eccb
 
 
aca606e
 
 
 
704eccb
 
aca606e
 
 
704eccb
 
 
 
 
7a83d85
aca606e
a677593
 
 
 
 
 
 
 
 
 
89b9813
 
 
 
 
c575e18
8435838
 
 
1679b8f
 
8435838
 
 
 
 
 
e62ac65
 
 
1679b8f
 
 
 
 
e62ac65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8435838
e62ac65
 
 
8435838
e62ac65
 
 
c575e18
8435838
1679b8f
e62ac65
 
1679b8f
a37042d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import asyncio
from utils import initialize_model, sample_frame
import torch

app = FastAPI()

# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")

# Serve the index.html file at the root URL
@app.get("/")
async def get():
    return HTMLResponse(open("static/index.html").read())

def generate_random_image(width: int, height: int) -> np.ndarray:
    return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)

def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
    pil_image = Image.fromarray(image)
    draw = ImageDraw.Draw(pil_image)
    
    for i, (action_type, position) in enumerate(previous_actions):
        color = (255, 0, 0) if action_type == "move" else (0, 255, 0)
        x, y = position
        draw.ellipse([x-2, y-2, x+2, y+2], fill=color)
        
        if i > 0:
            prev_x, prev_y = previous_actions[i-1][1]
            draw.line([prev_x, prev_y, x, y], fill=color, width=1)
    
    return np.array(pil_image)

# Initialize the model at the start of your application
model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

def load_initial_images(width, height):
    initial_images = []
    for i in range(7):
        image_path = f"image_{i}.png"
        if os.path.exists(image_path):
            img = Image.open(image_path).resize((width, height))
            initial_images.append(np.array(img))
        else:
            print(f"Warning: {image_path} not found. Using blank image instead.")
            initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
    return initial_images

def normalize_images(images, target_range=(-1, 1)):
    images = np.stack(images).astype(np.float32)
    if target_range == (-1, 1):
        return images / 127.5 - 1
    elif target_range == (0, 1):
        return images / 255.0
    else:
        raise ValueError(f"Unsupported target range: {target_range}")

def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
    width, height = 256, 256
    initial_images = load_initial_images(width, height)

    # Prepare the image sequence for the model
    image_sequence = previous_frames[-7:]  # Take the last 7 frames
    while len(image_sequence) < 7:
        #image_sequence.insert(0, np.zeros((height, width, 3), dtype=np.uint8))
        image_sequence.insert(0, initial_images[len(image_sequence)])


    # Convert the image sequence to a tensor and concatenate in the channel dimension
    image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence, target_range=(-1, 1)))

    #image_sequence_tensor = torch.from_numpy(np.stack(image_sequence)).float() / 127.5 - 1
    image_sequence_tensor = image_sequence_tensor.to(device)
    
    
    # Prepare the prompt based on the previous actions
    #action_descriptions = [f"{pos[0]}:{pos[1]}" for _, pos in previous_actions[-7:]]
    #prompt = " ".join(action_descriptions)
    action_descriptions = []
    def norm_x(x):
        return x + (1920 - 256) / 2
    def norm_y(y):
        return y + (1080 - 256) / 2
    for action_type, pos in previous_actions[-7:]:
        if action_type == "move":
            print (pos[0], pos[1])
            action_descriptions.append(f"{norm_x(pos[0])}:{norm_y(pos[1])}")
            
        elif action_type == "left_click":
            action_descriptions.append("left_click")
        elif action_type == "right_click":
            action_descriptions.append("right_click")
    
    prompt = " ".join(action_descriptions)
    print (prompt)
    
    # Generate the next frame
    new_frame = sample_frame(model, prompt, image_sequence_tensor)
    
    # Convert the generated frame to the correct format
    new_frame = (new_frame * 255).astype(np.uint8).transpose(1, 2, 0)
    
    # Resize the frame to 256x256 if necessary
    if new_frame.shape[:2] != (height, width):
        new_frame = np.array(Image.fromarray(new_frame).resize((width, height)))
    
    # Draw the trace of previous actions
    new_frame_with_trace = draw_trace(new_frame, previous_actions)
    
    return new_frame_with_trace

# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    client_id = id(websocket)  # Use a unique identifier for each connection
    print(f"New WebSocket connection: {client_id}")
    await websocket.accept()
    previous_frames = []
    previous_actions = []
    
    try:
        while True:
            try:
                # Receive user input with a timeout
                data = await asyncio.wait_for(websocket.receive_json(), timeout=30.0)
                
                if data.get("type") == "heartbeat":
                    await websocket.send_json({"type": "heartbeat_response"})
                    continue
                
                action_type = data.get("action_type")
                mouse_position = data.get("mouse_position")
                
                # Store the actions
                previous_actions.append((action_type, mouse_position))
                
                # Predict the next frame based on the previous frames and actions
                next_frame = predict_next_frame(previous_frames, previous_actions)
                previous_frames.append(next_frame)
                
                # Convert the numpy array to a base64 encoded image
                img = Image.fromarray(next_frame)
                buffered = io.BytesIO()
                img.save(buffered, format="PNG")
                img_str = base64.b64encode(buffered.getvalue()).decode()
                
                # Send the generated frame back to the client
                await websocket.send_json({"image": img_str})
            
            except asyncio.TimeoutError:
                print("WebSocket connection timed out")
                break
            
            except WebSocketDisconnect:
                print("WebSocket disconnected")
                break

    except Exception as e:
        print(f"Error in WebSocket connection {client_id}: {e}")
    
    finally:
        print(f"WebSocket connection closed: {client_id}")
        # Remove the explicit websocket.close() call here