Spaces:
Runtime error
Runtime error
File size: 6,688 Bytes
c54f817 8435838 c575e18 89b9813 8435838 89b9813 e62ac65 e8de28c a677593 b916cdf 8435838 c575e18 89b9813 a677593 c7afaf1 e8de28c 3208a74 89b9813 a677593 3208a74 a677593 3208a74 bfa85db 3208a74 33a9da7 bfa85db a677593 704eccb aca606e 704eccb aca606e 704eccb 7a83d85 aca606e a677593 89b9813 c575e18 8435838 1679b8f 8435838 e62ac65 1679b8f e62ac65 8435838 e62ac65 8435838 e62ac65 c575e18 8435838 1679b8f e62ac65 1679b8f a37042d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import asyncio
from utils import initialize_model, sample_frame
import torch
app = FastAPI()
# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Serve the index.html file at the root URL
@app.get("/")
async def get():
return HTMLResponse(open("static/index.html").read())
def generate_random_image(width: int, height: int) -> np.ndarray:
return np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
def draw_trace(image: np.ndarray, previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
pil_image = Image.fromarray(image)
draw = ImageDraw.Draw(pil_image)
for i, (action_type, position) in enumerate(previous_actions):
color = (255, 0, 0) if action_type == "move" else (0, 255, 0)
x, y = position
draw.ellipse([x-2, y-2, x+2, y+2], fill=color)
if i > 0:
prev_x, prev_y = previous_actions[i-1][1]
draw.line([prev_x, prev_y, x, y], fill=color, width=1)
return np.array(pil_image)
# Initialize the model at the start of your application
model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
def load_initial_images(width, height):
initial_images = []
for i in range(7):
image_path = f"image_{i}.png"
if os.path.exists(image_path):
img = Image.open(image_path).resize((width, height))
initial_images.append(np.array(img))
else:
print(f"Warning: {image_path} not found. Using blank image instead.")
initial_images.append(np.zeros((height, width, 3), dtype=np.uint8))
return initial_images
def normalize_images(images, target_range=(-1, 1)):
images = np.stack(images).astype(np.float32)
if target_range == (-1, 1):
return images / 127.5 - 1
elif target_range == (0, 1):
return images / 255.0
else:
raise ValueError(f"Unsupported target range: {target_range}")
def predict_next_frame(previous_frames: List[np.ndarray], previous_actions: List[Tuple[str, List[int]]]) -> np.ndarray:
width, height = 256, 256
initial_images = load_initial_images(width, height)
# Prepare the image sequence for the model
image_sequence = previous_frames[-7:] # Take the last 7 frames
while len(image_sequence) < 7:
#image_sequence.insert(0, np.zeros((height, width, 3), dtype=np.uint8))
image_sequence.insert(0, initial_images[len(image_sequence)])
# Convert the image sequence to a tensor and concatenate in the channel dimension
image_sequence_tensor = torch.from_numpy(normalize_images(image_sequence, target_range=(-1, 1)))
#image_sequence_tensor = torch.from_numpy(np.stack(image_sequence)).float() / 127.5 - 1
image_sequence_tensor = image_sequence_tensor.to(device)
# Prepare the prompt based on the previous actions
#action_descriptions = [f"{pos[0]}:{pos[1]}" for _, pos in previous_actions[-7:]]
#prompt = " ".join(action_descriptions)
action_descriptions = []
def norm_x(x):
return x + (1920 - 256) / 2
def norm_y(y):
return y + (1080 - 256) / 2
for action_type, pos in previous_actions[-7:]:
if action_type == "move":
print (pos[0], pos[1])
action_descriptions.append(f"{norm_x(pos[0])}:{norm_y(pos[1])}")
elif action_type == "left_click":
action_descriptions.append("left_click")
elif action_type == "right_click":
action_descriptions.append("right_click")
prompt = " ".join(action_descriptions)
print (prompt)
# Generate the next frame
new_frame = sample_frame(model, prompt, image_sequence_tensor)
# Convert the generated frame to the correct format
new_frame = (new_frame * 255).astype(np.uint8).transpose(1, 2, 0)
# Resize the frame to 256x256 if necessary
if new_frame.shape[:2] != (height, width):
new_frame = np.array(Image.fromarray(new_frame).resize((width, height)))
# Draw the trace of previous actions
new_frame_with_trace = draw_trace(new_frame, previous_actions)
return new_frame_with_trace
# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
client_id = id(websocket) # Use a unique identifier for each connection
print(f"New WebSocket connection: {client_id}")
await websocket.accept()
previous_frames = []
previous_actions = []
try:
while True:
try:
# Receive user input with a timeout
data = await asyncio.wait_for(websocket.receive_json(), timeout=30.0)
if data.get("type") == "heartbeat":
await websocket.send_json({"type": "heartbeat_response"})
continue
action_type = data.get("action_type")
mouse_position = data.get("mouse_position")
# Store the actions
previous_actions.append((action_type, mouse_position))
# Predict the next frame based on the previous frames and actions
next_frame = predict_next_frame(previous_frames, previous_actions)
previous_frames.append(next_frame)
# Convert the numpy array to a base64 encoded image
img = Image.fromarray(next_frame)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Send the generated frame back to the client
await websocket.send_json({"image": img_str})
except asyncio.TimeoutError:
print("WebSocket connection timed out")
break
except WebSocketDisconnect:
print("WebSocket disconnected")
break
except Exception as e:
print(f"Error in WebSocket connection {client_id}: {e}")
finally:
print(f"WebSocket connection closed: {client_id}")
# Remove the explicit websocket.close() call here
|