File size: 10,819 Bytes
fa82766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e6b75
fa82766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e6b75
 
 
 
 
 
 
 
fa82766
 
 
 
 
b9e6b75
 
 
 
 
 
 
 
 
 
fa82766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
"""
Analytics Analysis Tool for Neural OS Multi-GPU System

This script analyzes the structured analytics logs to generate reports and insights.
Usage: python analyze_analytics.py [--since HOURS] [--type TYPE]
"""

import json
import argparse
import glob
import time
from collections import defaultdict, Counter
from datetime import datetime, timedelta
import statistics

class AnalyticsAnalyzer:
    def __init__(self, since_hours=24):
        self.since_timestamp = time.time() - (since_hours * 3600)
        self.data = {
            'gpu_metrics': [],
            'connection_events': [],
            'queue_metrics': [],
            'ip_stats': []
        }
        self.load_data()
    
    def load_data(self):
        """Load all analytics data files"""
        file_types = {
            'gpu_metrics': 'gpu_metrics_*.jsonl',
            'connection_events': 'connection_events_*.jsonl', 
            'queue_metrics': 'queue_metrics_*.jsonl',
            'ip_stats': 'ip_stats_*.jsonl'
        }
        
        for data_type, pattern in file_types.items():
            files = glob.glob(pattern)
            for file_path in files:
                try:
                    with open(file_path, 'r') as f:
                        for line in f:
                            try:
                                record = json.loads(line.strip())
                                if record.get('type') != 'metadata' and record.get('timestamp', 0) >= self.since_timestamp:
                                    self.data[data_type].append(record)
                            except json.JSONDecodeError:
                                continue
                except FileNotFoundError:
                    continue
        
        print(f"Loaded data from the last {(time.time() - self.since_timestamp) / 3600:.1f} hours:")
        for data_type, records in self.data.items():
            print(f"  {data_type}: {len(records)} records")
        print()
    
    def analyze_gpu_utilization(self):
        """Analyze GPU utilization patterns"""
        print("🖥️  GPU UTILIZATION ANALYSIS")
        print("=" * 40)
        
        gpu_records = [r for r in self.data['gpu_metrics'] if r.get('type') == 'gpu_status']
        if not gpu_records:
            print("No GPU utilization data found.")
            return
        
        utilizations = [r['utilization_percent'] for r in gpu_records]
        total_gpus = gpu_records[-1].get('total_gpus', 0)
        
        print(f"Total GPUs: {total_gpus}")
        print(f"Average utilization: {statistics.mean(utilizations):.1f}%")
        print(f"Peak utilization: {max(utilizations):.1f}%")
        print(f"Minimum utilization: {min(utilizations):.1f}%")
        print(f"Utilization std dev: {statistics.stdev(utilizations) if len(utilizations) > 1 else 0:.1f}%")
        
        # Utilization distribution
        high_util = sum(1 for u in utilizations if u >= 80)
        med_util = sum(1 for u in utilizations if 40 <= u < 80)
        low_util = sum(1 for u in utilizations if u < 40)
        
        print(f"\nUtilization distribution:")
        print(f"  High (≥80%): {high_util} samples ({high_util/len(utilizations)*100:.1f}%)")
        print(f"  Medium (40-79%): {med_util} samples ({med_util/len(utilizations)*100:.1f}%)")
        print(f"  Low (<40%): {low_util} samples ({low_util/len(utilizations)*100:.1f}%)")
        print()
    
    def analyze_connections(self):
        """Analyze connection patterns"""
        print("🔗 CONNECTION ANALYSIS")
        print("=" * 40)
        
        opens = [r for r in self.data['connection_events'] if r.get('type') == 'connection_open']
        closes = [r for r in self.data['connection_events'] if r.get('type') == 'connection_close']
        
        if not opens and not closes:
            print("No connection data found.")
            return
        
        print(f"Total connections opened: {len(opens)}")
        print(f"Total connections closed: {len(closes)}")
        
        if closes:
            durations = [r['duration'] for r in closes]
            interactions = [r['interactions'] for r in closes]
            reasons = [r['reason'] for r in closes]
            
            print(f"\nSession durations:")
            print(f"  Average: {statistics.mean(durations):.1f}s")
            print(f"  Median: {statistics.median(durations):.1f}s")
            print(f"  Max: {max(durations):.1f}s")
            print(f"  Min: {min(durations):.1f}s")
            
            print(f"\nInteractions per session:")
            print(f"  Average: {statistics.mean(interactions):.1f}")
            print(f"  Median: {statistics.median(interactions):.1f}")
            print(f"  Max: {max(interactions)}")
            
            print(f"\nSession end reasons:")
            reason_counts = Counter(reasons)
            for reason, count in reason_counts.most_common():
                print(f"  {reason}: {count} ({count/len(closes)*100:.1f}%)")
        print()
    
    def analyze_queue_performance(self):
        """Analyze queue performance"""
        print("📝 QUEUE PERFORMANCE ANALYSIS")
        print("=" * 40)
        
        bypasses = [r for r in self.data['queue_metrics'] if r.get('type') == 'queue_bypass']
        waits = [r for r in self.data['queue_metrics'] if r.get('type') == 'queue_wait']
        statuses = [r for r in self.data['queue_metrics'] if r.get('type') == 'queue_status']
        limit_applications = [r for r in self.data['queue_metrics'] if r.get('type') == 'queue_limits_applied']
        
        total_users = len(bypasses) + len(waits)
        if total_users == 0:
            print("No queue data found.")
            return
        
        print(f"Total users processed: {total_users}")
        print(f"Users bypassed queue: {len(bypasses)} ({len(bypasses)/total_users*100:.1f}%)")
        print(f"Users waited in queue: {len(waits)} ({len(waits)/total_users*100:.1f}%)")
        
        if waits:
            wait_times = [r['wait_time'] for r in waits]
            positions = [r['queue_position'] for r in waits]
            
            print(f"\nWait time statistics:")
            print(f"  Average wait: {statistics.mean(wait_times):.1f}s")
            print(f"  Median wait: {statistics.median(wait_times):.1f}s")
            print(f"  Max wait: {max(wait_times):.1f}s")
            print(f"  Average queue position: {statistics.mean(positions):.1f}")
        
        if statuses:
            queue_sizes = [r['queue_size'] for r in statuses]
            # Handle both old 'estimated_wait' and new 'maximum_wait' fields for backwards compatibility
            maximum_waits = []
            for r in statuses:
                if r['queue_size'] > 0:
                    if 'maximum_wait' in r:
                        maximum_waits.append(r['maximum_wait'])
                    elif 'estimated_wait' in r:
                        maximum_waits.append(r['estimated_wait'])
            
            print(f"\nQueue size statistics:")
            print(f"  Average queue size: {statistics.mean(queue_sizes):.1f}")
            print(f"  Max queue size: {max(queue_sizes)}")
            
            if maximum_waits:
                print(f"  Average maximum wait: {statistics.mean(maximum_waits):.1f}s")
                print(f"  Peak maximum wait: {max(maximum_waits):.1f}s")
        
        if limit_applications:
            total_affected = sum(r['affected_sessions'] for r in limit_applications)
            print(f"\nQueue limit applications:")
            print(f"  Times limits applied to existing sessions: {len(limit_applications)}")
            print(f"  Total sessions affected: {total_affected}")
            print(f"  Average sessions affected per application: {total_affected/len(limit_applications):.1f}")
        print()
    
    def analyze_ip_usage(self):
        """Analyze IP address usage patterns"""
        print("🌍 IP USAGE ANALYSIS") 
        print("=" * 40)
        
        ip_records = self.data['ip_stats']
        if not ip_records:
            print("No IP usage data found.")
            return
        
        # Get latest connection counts per IP
        latest_ip_data = {}
        for record in ip_records:
            if record.get('type') == 'ip_update':
                ip = record['ip_address']
                latest_ip_data[ip] = record['connection_count']
        
        if not latest_ip_data:
            print("No IP connection data found.")
            return
        
        total_connections = sum(latest_ip_data.values())
        unique_ips = len(latest_ip_data)
        
        print(f"Total unique IP addresses: {unique_ips}")
        print(f"Total connections: {total_connections}")
        print(f"Average connections per IP: {total_connections/unique_ips:.1f}")
        
        print(f"\nTop IP addresses by connection count:")
        sorted_ips = sorted(latest_ip_data.items(), key=lambda x: x[1], reverse=True)
        for i, (ip, count) in enumerate(sorted_ips[:10], 1):
            percentage = count / total_connections * 100
            print(f"  {i:2d}. {ip}: {count} connections ({percentage:.1f}%)")
        print()
    
    def generate_summary_report(self):
        """Generate a comprehensive summary report"""
        print("📊 SYSTEM SUMMARY REPORT")
        print("=" * 50)
        
        # Time range
        start_time = datetime.fromtimestamp(self.since_timestamp)
        end_time = datetime.now()
        duration_hours = (end_time.timestamp() - self.since_timestamp) / 3600
        
        print(f"Report period: {start_time.strftime('%Y-%m-%d %H:%M:%S')} to {end_time.strftime('%Y-%m-%d %H:%M:%S')}")
        print(f"Duration: {duration_hours:.1f} hours")
        print()
        
        self.analyze_gpu_utilization()
        self.analyze_connections()
        self.analyze_queue_performance()
        self.analyze_ip_usage()

def main():
    parser = argparse.ArgumentParser(description='Analyze Neural OS analytics data')
    parser.add_argument('--since', type=float, default=24, 
                       help='Analyze data from the last N hours (default: 24)')
    parser.add_argument('--type', choices=['gpu', 'connections', 'queue', 'ip', 'summary'],
                       default='summary', help='Type of analysis to perform')
    
    args = parser.parse_args()
    
    analyzer = AnalyticsAnalyzer(since_hours=args.since)
    
    if args.type == 'gpu':
        analyzer.analyze_gpu_utilization()
    elif args.type == 'connections':
        analyzer.analyze_connections()
    elif args.type == 'queue':
        analyzer.analyze_queue_performance()
    elif args.type == 'ip':
        analyzer.analyze_ip_usage()
    else:
        analyzer.generate_summary_report()

if __name__ == '__main__':
    main()